Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Normal ogive (NO) models have contributed substantially to the advancement of item response theory (IRT) and have become popular educational and psychological measurement models. However, estimating NO models remains computationally challenging. The purpose of this paper is to propose an efficient and reliable computational method for fitting NO models. Specifically, we introduce a novel and unified expectation‐maximization (EM) algorithm for estimating NO models, including two‐parameter, three‐parameter, and four‐parameter NO models. A key improvement in our EM algorithm lies in augmenting the NO model to be a complete data model within the exponential family, thereby substantially streamlining the implementation of the EM iteration and avoiding the numerical optimization computation in the M‐step. Additionally, we propose a two‐step expectation procedure for implementing the E‐step, which reduces the dimensionality of the integration and effectively enables numerical integration. Moreover, we develop a computing procedure for estimating the standard errors (SEs) of the estimated parameters. Simulation results demonstrate the superior performance of our algorithm in terms of its recovery accuracy, robustness, and computational efficiency. To further validate our methods, we apply them to real data from the Programme for International Student Assessment (PISA). The results affirm the reliability of the parameter estimates obtained using our method.more » « less
-
Abstract In this paper, we develop a mixed stochastic approximation expectation‐maximization (MSAEM) algorithm coupled with a Gibbs sampler to compute the marginalized maximum a posteriori estimate (MMAPE) of a confirmatory multidimensional four‐parameter normal ogive (M4PNO) model. The proposed MSAEM algorithm not only has the computational advantages of the stochastic approximation expectation‐maximization (SAEM) algorithm for multidimensional data, but it also alleviates the potential instability caused by label‐switching, and then improved the estimation accuracy. Simulation studies are conducted to illustrate the good performance of the proposed MSAEM method, where MSAEM consistently performs better than SAEM and some other existing methods in multidimensional item response theory. Moreover, the proposed method is applied to a real data set from the 2018 Programme for International Student Assessment (PISA) to demonstrate the usefulness of the 4PNO model as well as MSAEM in practice.more » « less
An official website of the United States government
