skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Menge, Duncan N. L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nitrogen (N) limitation to net primary production is widespread and influences the responsiveness of ecosystems to many components of global environmental change. Logic and both simple simulation (Vitousek and Fieldin in Biogeochemistry 46: 179–202, 1999) and analytical models (Menge in Ecosystems 14:519–532, 2011) demonstrate that the co-occurrence of losses of N in forms that organisms within an ecosystem cannot control and barriers to biological N fixation (BNF) that keep this process from responding to N deficiency are necessary for the development and persistence of N limitation. Models have focused on the continuous process of leaching losses of dissolved organic N in biologically unavailable forms, but here we use a simple simulation model to show that discontinuous losses of ammonium and nitrate, normally forms of N whose losses organisms can control, can be uncontrollable by organisms and can contribute to N limitation under realistic conditions. These discontinuous losses can be caused by temporal variation in precipitation or by ecosystem-level disturbance like harvest, fire, and windthrow. Temporal variation in precipitation is likely to increase and to become increasingly important in causing N losses as anthropogenic climate change proceeds. We also demonstrate that under the conditions simulated here, differentially intense grazing on N- and P-rich symbiotic N fixers is the most important barrier to the responsiveness of BNF to N deficiency.

     
    more » « less
  2. Abstract

    Nitrogen (N)‐fixing trees are thought to break a basic rule of leaf economics: higher leaf N concentrations do not translate into higher rates of carbon assimilation. Understanding how leaf N affects photosynthesis and water use efficiency (WUE) in this ecologically important group is critical.

    We grew six N‐fixing and four non‐fixing tree species for 4–5 years at four fertilization treatments in field experiments in temperate and tropical regions to assess how functional type (N fixer vs. non‐fixer) and N limitation affected leaf N and how leaf N affected light‐saturated photosynthesis (Asat), stomatal conductance (gsw) and WUE (WUEiand δ13C).

    Asat, WUEiand δ13C, but notgsw, increased with higher leaf N. Surprisingly, N‐fixing and non‐fixing trees displayed similar scaling between leaf N and these physiological variables, and this finding was supported by reanalysis of a global dataset. N fixers generally had higher leaf N than non‐fixers, even when non‐fixers were not N‐limited at the leaf level. Leaf‐level N limitation did not alter the relationship ofAsat,gsw, WUEiand δ13C with leaf N, although it did affect the photosynthetic N use efficiency. Higher WUE was associated with higher productivity, whereas higherAsatwas not.

    Synthesis: The ecological success of N‐fixing trees depends on the effect of leaf N on carbon gain and water loss. Using a field fertilization experiment and reanalysis of a global dataset, we show that high leaf‐level photosynthesis and WUE in N fixers stems from their higher average leaf N, rather than a difference between N fixers and non‐fixers in the scaling of photosynthesis and WUE with leaf N. By clarifying the mechanism by which N fixers achieve and benefit from high WUE, our results further the understanding of global N fixer distributions.

     
    more » « less
  3. Abstract

    Light and soil nitrogen availability can be strong controls of plant nitrogen (N) fixation, but data on how understory N‐fixing plants respond to these drivers are limited despite their important role in ecosystem N cycling. Furthermore, ecosystem N cycling can be altered by the introduction of species with nutrient use patterns that differ from natives. We assessed how N fixation of two exotic, understory species responded to varying light and soil N environments.

    We sampled leaf tissue fromMimosa pudicaL.,Desmodium triflorum(L.) DC., and a nonfixing reference plant (Axonopus) growing in control and two N fertilization treatments under either N‐fixing or non‐N‐fixing trees, which may alter local soil nutrient cycling, across a range of light conditions. We measured N fixation with15N isotope dilution, and ensured that N‐fixing neighbour trees were in fact fixing N. All understory plants were wild‐growing species not native to the study location.

    DesmodiumandMimosaacquired 82.6% and 71.6% of their nitrogen from fixation (%Ndfa) in the control, compared to 66.8% and 58.1% in the +10 g N m−2 year−1treatment and 73.1% and 64.7% in the +15 g N m−2 year−1treatment. These subtle %Ndfadifferences across fertilization treatments were more apparent at low light availability and disappeared at high light availability. The amount of N fixed by neighbouring trees did not influence %Ndfain the understory species.

    Synthesis. Our study shows some differences in N fixation across different nutrient environments at low light for two N‐fixing species, though the changes were small, and both species derived most of their N from fixation. These findings imply that introduced N‐fixing species could exacerbate ecosystem N enrichment, particularly under high soil N conditions.

     
    more » « less
  4. Abstract

    Forests are a significant CO2sink. However, CO2sequestration in forests is radiatively offset by emissions of nitrous oxide (N2O), a potent greenhouse gas, from forest soils. Reforestation, an important strategy for mitigating climate change, has focused on maximizing CO2sequestration in plant biomass without integrating N2O emissions from soils. Although nitrogen (N)‐fixing trees are often recommended for reforestation because of their rapid growth on N‐poor soil, they can stimulate significant N2O emissions from soils. Here, we first used a field experiment to show that a N‐fixing tree (Robinia pseudoacacia) initially mitigated climate change more than a non‐fixing tree (Betula nigra). We then used our field data to parameterize a theoretical model to investigate these effects over time. Under lower N supply, N‐fixers continued to mitigate climate change more than non‐fixers by overcoming N limitation of plant growth. However, under higher N supply, N‐fixers ultimately mitigated climate change less than non‐fixers by enriching soil N and stimulating N2O emissions from soils. These results have implications for reforestation, suggesting that N‐fixing trees are more effective at mitigating climate change at lower N supply, whereas non‐fixing trees are more effective at mitigating climate change at higher N supply.

     
    more » « less
  5. Abstract

    Nitrogen (N)‐fixing trees fulfil a unique and important biogeochemical role in forests through their ability to convert atmospheric N2gas to plant‐available N. Due to their high N fixation rates, it is often assumed that N‐fixing trees facilitate neighbouring trees and enhance forest growth. This assumption is supported by some local studies but contradicted by others, leaving the overall effect of N‐fixing trees on forest growth unresolved.

    Here we use the US Forest Service's Forest Inventory and Analysis database to evaluate the effects of N‐fixing trees on plot‐scale basal area change and individual‐scale neighbouring tree demography across the coterminous US.

    First we discuss the average trends. At the plot and individual scales, N‐fixing trees do not affect the relative growth rates of neighbouring trees, but they facilitate recruitment and inhibit survival rates, suggesting that they are drivers of tree turnover in the coterminous US. At the plot scale, N‐fixing trees facilitate the basal area change of non‐fixing neighbours.

    In addition to the average trends, there is wide variation in the effect of N‐fixing trees on forest growth, ranging from strong facilitation to strong inhibition. This variation does not show a clear geographical pattern, though it does vary with certain local factors. N‐fixing trees facilitate forest growth when they are likely to be less competitive: under high N deposition and high soil moisture or when neighbouring trees occupy different niches (e.g. high foliar C:N trees and non‐fixing trees).

    Synthesis. N‐fixing trees have highly variable effects on forest growth and neighbour demographics across the coterminous US. This suggests that the effect of N‐fixing trees on forest development and carbon storage depends on local factors, which may help reconcile the conflicting results found in previous localized studies on the effect of N‐fixing trees on forest growth.

     
    more » « less
  6. Abstract

    Symbiotic nitrogen fixation (SNF) is a key ecological process whose impact depends on the strategy of SNF regulation—the degree to which rates of SNF change in response to limitation by N versus other resources. SNF that is obligate or exhibits incomplete downregulation can result in excess N fixation, whereas a facultative SNF strategy does not. We hypothesized that tree‐based SNF strategies differed by latitude (tropical vs. temperate) and symbiotic type (actinorhizal vs. rhizobial). Specifically, we expected tropical rhizobial symbioses to display strongly facultative SNF as an explanation of their success in low‐latitude forests. In this study we used15N isotope dilution field experiments in New York, Oregon, and Hawaii to determine SNF strategies in six N‐fixing tree symbioses. Nitrogen fertilization with +10 and +15 g N m−2 year−1for 4–5 years alleviated N limitation in all taxa, paving the way to determine SNF strategies. Contrary to our hypothesis, all six of the symbioses we studied sustained SNF even at high N.Robinia pseudoacacia(temperate rhizobial) fixed 91% of its N (%Ndfa) in controls, compared to 64% and 59% in the +10 and +15 g N m−2 year−1treatments. ForAlnus rubra(temperate actinorhizal), %Ndfawas 95%, 70%, and 60%. For the tropical species, %Ndfawas 86%, 80%, and 82% forGliricidia sepium(rhizobial); 79%, 69%, and 67% forCasuarina equisetifolia(actinorhizal); 91%, 42%, and 67% forAcacia koa(rhizobial); and 60%, 51%, and 19% forMorella faya(actinorhizal). Fertilization with phosphorus did not stimulate tree growth or SNF. These results suggest that the latitudinal abundance distribution of N‐fixing trees is not caused by a shift in SNF strategy. They also help explain the excess N in many forests where N fixers are common.

     
    more » « less
  7. Abstract

    Symbiotic nitrogen fixation (SNF) by higher plants and their bacterial symbionts is a globally important input of nitrogen. Our understanding of the mechanisms that control SNF and the time‐scales over which they operate has been constrained by the limitations of the existing methods for measuring SNF. One method, Acetylene Reduction Assays by Cavity ring‐down laser Absorption Spectroscopy (ARACAS), seems promising, as it is highly sensitive and gives rapid, continuous, repeatable and real‐time measurements of nitrogenase activity. ARACAS has been used to study nitrogen fixation in lichens, mosses and asymbiotic bacteria, but adapting it to higher plants poses challenges because acetylene and ethylene can influence plant function.

    Here, we report modifications to ARACAS that allow it to be used on higher plants in an environmentally controlled incubation chamber. The modifications include lower concentrations of acetylene (2%) and ethylene and concurrent measurements of whole‐chamber CO2exchange, H2O exchange and nitrogenase activity, linking nitrogenase activity to whole‐plant rates of photosynthesis and respiration.

    After propagating the error terms from all sources, we establish the following parameters of the method: (a) The detection limit of our method was 2–3 ppbv C2H4per hour, although it rose substantially when we used tank‐derived acetylene, which has much higher ethylene contamination; (b) Repeated measures at a frequency of 3 days or longer did not diminish nitrogenase activity or photosynthesis, although daily measurements diminished nitrogenase activity; (c) This method can detect changes at time‐scales as short as seconds; (d) Continuous measurement of nitrogenase activity is maintained above 90% of the maximum rate for 7.0 ± 1.3 (M ± SD) hours.

    This method has the potential to improve our understanding of the controls over SNF, and therefore, how SNF and global nitrogen and carbon cycling are likely to be affected by global change.

     
    more » « less
  8. Abstract

    Symbiotic nitrogen (N)‐fixing trees can drive N and carbon cycling and thus are critical components of future climate projections. Despite detailed understanding of how climate influences N‐fixation enzyme activity and physiology, comparatively little is known about how climate influences N‐fixing tree abundance. Here, we used forest inventory data from theUSAand Mexico (>125,000 plots) along with climate data to address two questions: (1) How does the abundance distribution of N‐fixing trees (rhizobial, actinorhizal, and both types together) vary with mean annual temperature (MAT) and precipitation (MAP)? (2) How will changing climate shift the abundance distribution of N‐fixing trees? We found that rhizobial N‐fixing trees were nearly absent below 15°CMAT, but above 15°CMAT, they increased in abundance as temperature rose. We found no evidence for a hump‐shaped response to temperature throughout the range of our data. Rhizobial trees were more abundant in dry than in wet ecosystems. By contrast, actinorhizal trees peaked in abundance at 5–10°CMATand were least abundant in areas with intermediate precipitation. Next, we used a climate‐envelope approach to project how N‐fixing tree relative abundance might change in the future. The climate‐envelope projection showed that rhizobial N‐fixing trees will likely become more abundant in many areas by 2080, particularly in the southernUSAand western Mexico, due primarily to rising temperatures. Projections for actinorhizal N‐fixing trees were more nuanced due to their nonmonotonic dependence on temperature and precipitation. Overall, the dominant trend is that warming will increase N‐fixing tree abundance in much of theUSAand Mexico, with large increases up to 40° North latitude. The quantitative link we provide between climate and N‐fixing tree abundance can help improve the representation of symbiotic N fixation in Earth System Models.

     
    more » « less
  9. Abstract

    Fertilized temperate croplands export large amounts of reactive nitrogen (N), which degrades water and air quality and contributes to climate change. Fertilizer use is poised to increase in the tropics, where widespread food insecurity persists and increased agricultural productivity will be needed, but much less is known about the potential consequences of increased tropical N fertilizer application. We conducted a meta‐analysis of tropical field studies of nitrate leaching, nitrous oxide emissions, nitric oxide emissions, and ammonia volatilization totaling more than 1,000 observations. We found that the relationship between N inputs and losses differed little between temperate and tropical croplands, although total nitric oxide losses were higher in the tropics. Among the potential drivers we studied, the N input rate controlled all N losses, but soil texture and water inputs also controlled hydrological N losses. Irrigated systems had significantly higher losses of ammonia, and pasture agroecosystems had higher nitric oxide losses. Tripling of fertilizer N inputs to tropical croplands from 50 to 150 kg N ha−1 year−1would have substantial environmental implications and would lead to increases in nitrate leaching (+30%), nitrous oxide emissions (+30%), nitric oxide (+66%) emissions, and ammonia volatilization (+74%), bringing tropical agricultural nitrate, nitrous oxide, and ammonia losses in line with temperate losses and raising nitric oxide losses above them.

     
    more » « less