- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Menon, Rohit (2)
-
Beyea, Wayne (1)
-
Bode, Claire (1)
-
Chandrashekar, Mohan_Kumar_B (1)
-
Crawford, Pat (1)
-
Doll, Julie (1)
-
Olowofila, Samuel (1)
-
Oluwadare, Oluwatosin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract MotivationSingle-cell Hi-C (scHi-C) data provide critical insights into chromatin interactions at individual cell levels, uncovering unique genomic 3D structures. However, scHi-C datasets are characterized by sparsity and noise, complicating efforts to accurately reconstruct high-resolution chromosomal structures. In this study, we present ScUnicorn, a novel blind super-resolution framework for scHi-C data enhancement. ScUnicorn uses an iterative degradation kernel optimization process, unlike traditional super-resolution approaches, which rely on downsampling, predefined degradation ratios, or constant assumptions about the input data to reconstruct high-resolution interaction matrices. Hence, our approach more reliably preserves critical biological patterns and minimizes noise. Additionally, we propose 3DUnicorn, a maximum likelihood algorithm that leverages the enhanced scHi-C data to infer precise 3D chromosomal structures. ResultsOur evaluation demonstrates that ScUnicorn achieves superior performance over the state-of-the-art methods in terms of Peak Signal-to-Noise Ratio, Structural Similarity Index Measure, and GenomeDisco scores. Moreover, 3DUnicorn’s reconstructed structures align closely with experimental 3D-FISH data, underscoring its biological relevance. Together, ScUnicorn and 3DUnicorn provide a robust framework for advancing genomic research by enhancing scHi-C data fidelity and enabling accurate 3D genome structure reconstruction. Availability and implementationUnicorn implementation is publicly accessible at https://github.com/OluwadareLab/Unicorn.more » « less
-
Crawford, Pat; Beyea, Wayne; Bode, Claire; Doll, Julie; Menon, Rohit (, Town Planning Review)
An official website of the United States government
