- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Buckley, Thomas N (2)
-
Merchant, Andrew (2)
-
Coleman, David (1)
-
Richards, Richard A (1)
-
Salter, William T (1)
-
Trethowan, Richard M (1)
-
Windt, Carel W (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
Johnson, Daniel (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Stomata are the gatekeepers of plant water use and must quickly respond to changes in plant water status to ensure plant survival under fluctuating environmental conditions. The mechanism for their closure is highly sensitive to disturbances in leaf water status, which makes isolating their response to declining water content difficult to characterise and to compare responses among species. Using a small‐scale non‐destructive nuclear magnetic resonance spectrometer as a leaf water content sensor, we measure the stomatal response to rapid induction of water deficit in the leaves of nine species of eucalypt from contrasting climates. We found a strong linear correlation between relative water content at 50% stomatal conductance (RWCgs50) and mean annual temperature at the climate of origin of each species. We also show evidence for stomata to maintain control over water loss well below turgor loss point in species adapted to warmer climates and secondary increases in stomatal conductance despite declining water content. We propose that RWCgs50is a promising trait to guide future investigations comparing stomatal responses to water deficit. It may provide a useful phenotyping trait to delineate tolerance and adaption to hot temperatures and high leaf‐to‐air vapour pressure deficits.more » « less
-
Salter, William T; Merchant, Andrew; Trethowan, Richard M; Richards, Richard A; Buckley, Thomas N (, AoB PLANTS)Johnson, Daniel (Ed.)Abstract Suboptimal distribution of photosynthetic capacity in relation to light among leaves reduces potential whole-canopy photosynthesis. We quantified the degree of suboptimality in 160 genotypes of wheat by directly measuring photosynthetic capacity and daily irradiance in flag and penultimate leaves. Capacity per unit daily irradiance was systematically lower in flag than penultimate leaves in most genotypes, but the ratio (γ) of capacity per unit irradiance between flag and penultimate leaves varied widely across genotypes, from less than 0.5 to over 1.2. Variation in γ was most strongly associated with differences in photosynthetic capacity in penultimate leaves, rather than with flag leaf photosynthesis or canopy light penetration. Preliminary genome-wide association analysis identified nine strong marker-trait associations with this trait, which should be validated in future work in other environments and/or materials. Our modelling suggests canopy photosynthesis could be increased by up to 5 % under sunny conditions by harnessing this variation through selective breeding for increased γ.more » « less
An official website of the United States government
