skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Meriles, Carlos A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. High-temperature annealing is a promising but still mainly unexplored method for enhancing spin properties of negatively charged nitrogen-vacancy (NV) centers in diamond particles. After high-energy irradiation, the formation of NV centers in diamond particles is typically accomplished via annealing at temperatures in the range of 800–900 °C for 1–2 h to promote vacancy diffusion. Here, we investigate the effects of conventional annealing (900 °C for 2 h) against annealing at a much higher temperature of 1600 °C for the same annealing duration for particles ranging in size from 100 nm to 15 μm using electron paramagnetic resonance and optical characterization. At this high temperature, the vacancy-assisted diffusion of nitrogen can occur. Previously, the annealing of diamond particles at this temperature was performed over short time scales because of concerns of particle graphitization. Our results demonstrate that particles that survive this prolonged 1600 °C annealing show increased NV T1 and T2 electron spin relaxation times in 1 and 15 μm particles, due to the removal of fast relaxing spins. Additionally, this high-temperature annealing also boosts magnetically induced fluorescence contrast of NV centers for particle sizes ranging from 100 nm to 15 μm. At the same time, the content of NV centers is decreased fewfold and reaches a level of <0.5 ppm. The results provide guidance for future studies and the optimization of high-temperature annealing of fluorescent diamond particles for applications relying on the spin properties of NV centers in the host crystals. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Abstract

    Extending the coherence lifetime of a qubit is central to the implementation and deployment of quantum technologies, particularly in the solid state where various noise sources intrinsic to the material host play a limiting role. This study examines theoretically the coherent spin dynamics of a hetero‐spin system formed by a spin featuring a non‐zero crystal field and in proximity to a paramagnetic center . An analysis of the energy level structure of the dyad shows this system exhibits apair of levels separated by a magnetic‐field‐insensitive energy gap, which can be exploited to create long‐lived zero‐quantum coherences. It is found that these coherences are selectively sensitive to “local”—as opposed to “global”—magnetic field fluctuations, suggesting these spin dyads can serve as a nanoscale gradiometer for precision magnetometry. On the other hand, the distinct response of either spin species to electric or thermal stimuli allows one to implement alternative sensing protocols for magnetic‐noise‐free electrometry and thermometry.

    more » « less
  4. The application of color centers in wide-bandgap semiconductors to nanoscale sensing and quantum information processing largely rests on our knowledge of the surrounding crystalline lattice, often obscured by the countless classes of point defects the material can host. Here, we monitor the fluorescence from a negatively charged nitrogen-vacancy (NV − ) center in diamond as we illuminate its vicinity. Cyclic charge state conversion of neighboring point defects sensitive to the excitation beam leads to a position-dependent stream of photo-generated carriers whose capture by the probe NV − leads to a fluorescence change. This “charge-to-photon” conversion scheme allows us to image other individual point defects surrounding the probe NV, including nonfluorescent “single-charge emitters” that would otherwise remain unnoticed. Given the ubiquity of color center photochromism, this strategy may likely find extensions to material systems other than diamond. 
    more » « less