skip to main content

Search for: All records

Creators/Authors contains: "Merkin, V. G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2024
  2. Abstract

    A new technique has been developed to determine the high‐latitude electric potential from observed field‐aligned currents (FACs) and modeled ionospheric conductances. FACs are observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), while the conductances are modeled by Sami3 is Also a Model of the Ionosphere (SAMI3). This is a development of the Magnetosphere‐Ionosphere Coupling approach first demonstrated by Merkin and Lyon (2010), An advantage of using SAMI3 is that the model can be used to predict total electron content (TEC), based on the AMPERE‐derived potential solutions. 23 May 2014 is chosen as a case study to assess the new technique for a moderately disturbed case (min Dst: −36 nT, max AE: 909 nT) with good GPS data coverage. The new AMPERE/SAMI3 solutions are compared against independent GPS‐based TEC observations from the Multi‐Instrument Data Analysis Software (MIDAS) by Mitchell and Spencer (2003), and against Defense Meteorological Satellite Program (DMSP) ion drift data. The comparison shows excellent agreement between the location of the tongue of ionization in the MIDAS GPS data and the AMPERE/SAMI3 potential pattern, and good overall agreement with DMSP drifts. SAMI3 predictions of high‐latitude TEC are much improved when using the AMPERE‐derived potential as compared tomore »Weimer's (2005), The two potential models have substantial differences, with Weimer producing an average 77 kV cross‐cap potential versus 60 kV for the AMPERE‐derived potential. The results indicate that the 66‐satellite Iridium constellation provides sufficient resolution of FACs to estimate large‐scale ionospheric convection as it impacts TEC.

    « less
  3. Abstract

    This paper addresses the question of the contribution of azimuthally localized flow channels and magnetic field dipolarizations embedded in them in the global dipolarization of the inner magnetosphere during substorms. We employ the high‐resolution Lyon‐Fedder‐Mobarry global magnetosphere magnetohydrodynamic model and simulate an isolated substorm event, which was observed by the geostationary satellites and by the Magnetospheric Multiscale spacecraft. The results of our simulations reveal that plasma sheet flow channels (bursty bulk flows, BBFs) and elementary dipolarizations (dipolarization fronts, DFs) occur in the growth phase of the substorm but are rare and do not penetrate to the geosynchronous orbit. The substorm onset is characterized by an abrupt increase in the occurrence and intensity of BBFs/DFs, which penetrate well earthward of the geosynchronous orbit during the expansion phase. These azimuthally localized structures are solely responsible for the global (in terms of the magnetic local time) dipolarization of the inner magnetosphere toward the end of the substorm expansion. Comparison with the geostationary satellites and Magnetospheric Multiscale data shows that the properties of the BBFs/DFs in the simulation are similar to those observed, which gives credence to the above results. Additionally, the simulation reveals many previously observed signatures of BBFs and DFs, includingmore »overshoots and oscillations around their equilibrium position, strong rebounds and vortical tailward flows, and the corresponding plasma sheet expansion and thinning.

    « less
  4. Abstract

    Thek‐nearest‐neighbor technique is used to mine a multimission magnetometer database for a subset of data points from time intervals that are similar to the storm state of the magnetosphere for a particular moment in time. These subsets of data are then used to fit an empirical magnetic field model. Performing this for each snapshot in time reconstructs the dynamic evolution of the magnetic and electric current density distributions during storms. However, because weaker storms occur more frequently than stronger storms, the reconstructions are biased toward them. We demonstrate that distance weighting the nearest‐neighbors mitigates this issue while allowing a sufficient amount of data to be included in the fitting procedure to limit overfitting. Using this technique, we reconstruct the distribution of the magnetic field and electric currents and their evolution for two storms, the intense 17–19 March 2015 “Saint Patrick's Day” storm and a moderate storm occurring on 13–15 July 2013, from which the pressure distributions can be computed assuming isotropy and by integrating the steady‐state force‐balance equation. As the main phase of a storm progresses in time, the westward ring current density and pressure increases in the inner magnetosphere particularly on the nightside, becoming more symmetric as themore »recovery phase progresses. We validate the empirical pressure by comparing it to the observed pressures from the Van Allen Probes mission by summing over particle fluxes from all available energy channels and species.

    « less
  5. Abstract

    Substorm‐type evolution of the Earth's magnetosphere is investigated by mining more than two decades (1995–2017) of spaceborne magnetometer data from multiple missions including the first two years (2016‐2017) of the Magnetospheric MultiScale mission. This investigation reveals interesting features of plasma evolution distinct from ideal magnetohydrodynamics (MHD) behavior: X‐lines, thin current sheets, and regions with the tailward gradient of the equatorial magnetic fieldBz. X‐lines are found to form mainly beyond 20RE, but for strong driving, with the solar wind electric field exceeding ∼5mV/m, they may come closer. For substorms with weaker driving, X‐lines may be preceded by redistribution of the magnetic flux in the tailwardBzgradient regions, similar to the magnetic flux release instability discovered earlier in PIC and MHD simulations as a precursor mechanism of the reconnection onset. Current sheets in the growth phase may be as thin as 0.2RE, comparable to the thermal ions gyroradius, and at the same time, as long as 15RE. Such an aspect ratio is inconsistent with the isotropic force balance for observed magnetic field configurations. These findings can help resolve kinetic mechanisms of substorm dipolarizations and adjust kinetic generalizations of global MHD models of the magnetosphere. They can also guide and complement microscale analysismore »of nonideal effects.

    « less