skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Metcalfe, Jason S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The decision process of engaging or disengaging automation has been termed reliance on automation, and it has been widely analyzed as a summary measure of automation usage rather than a dynamic measure. We provide a framework for defining temporal reliance dynamics and apply it to a data-set from a previous study. Our findings show that (1) the higher the reliability of an automated system, the larger the reliance over time; and (2) more workload created by the automation type does not significantly affect the operators’ reliance dynamics in high-reliability systems, but it does produce greater reliance in low-reliability systems. Furthermore, on average, operators with low performance make fewer decision changes and prefer to stick to their decision of using automation even if it is not performing well. Operators with high performance, on average, have a higher frequency of decision change, and therefore, their automation usage periods are shorter. 
    more » « less
  2. Risk has been a key factor influencing trust in Human-Automation interactions, though there is no unified tool to study its dynamics. We provide a framework for defining and assessing relative risk of automation usage through performance dynamics and apply this framework to a dataset from a previous study. Our approach allows us to explore how operators’ ability and different automation conditions impact the performance and relative risk dynamics. Our results on performance dynamics show that, on average, operators perform better (1) using automation that is more reliable and (2) using partial automation (more workload) than full automation (less workload). Our analysis of relative risk dynamics indicates that automation with higher reliability has higher relative risk dynamics. This suggests that operators are willing to take more risk for automation with higher reliability. Additionally, when the reliability of automation is lower, operators adapt their behavior to result in lower risk. 
    more » « less