skip to main content


Search for: All records

Creators/Authors contains: "Metzger, B. D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a comprehensive study of 29 short gamma-ray bursts (SGRBs) observed ≈0.8−60 days postburst using Chandra and XMM-Newton. We provide the inferred distributions of the SGRB jet opening angles and true event rates to compare against neutron star merger rates. We perform a uniform analysis and modeling of their afterglows, obtaining 10 opening angle measurements and 19 lower limits. We report on two new opening angle measurements (SGRBs 050724A and 200411A) and eight updated values, obtaining a median value of 〈θj〉 ≈ 6.°1 [−3.°2, +9.°3] (68% confidence on the full distribution) from jet measurements alone. For the remaining events, we inferθj≳ 0.°5–26°. We uncover a population of SGRBs with wider jets ofθj≳ 10° (including two measurements ofθj≳ 15°), representing ∼28% of our sample. Coupled with multiwavelength afterglow information, we derive a total true energy of 〈Etrue,tot〉 ≈ 1049–1050erg, which is consistent with magnetohydrodynamic jet launching mechanisms. Furthermore, we determine a range for the beaming-corrected event rate ofRtrue3601800Gpc−3yr−1, set by the inclusion of a population of wide jets on the low end, and the jet measurements alone on the high end. From a comparison with the latest merger rates, our results are consistent with the majority of SGRBs originating from binary neutron star mergers. However, our inferred rates are well above the latest neutron star–black hole merger rates, consistent with at most a small fraction of SGRBs originating from such mergers.

     
    more » « less
  2. Abstract Common envelope (CE) evolution is an outstanding open problem in stellar evolution, critical to the formation of compact binaries including gravitational-wave sources. In the “classical” isolated binary evolution scenario for double compact objects, the CE is usually the second mass transfer phase. Thus, the donor star of the CE is the product of a previous binary interaction, often stable Roche lobe overflow (RLOF). Because of the accretion of mass during the first RLOF, the main-sequence core of the accretor star grows and is “rejuvenated.” This modifies the core-envelope boundary region and decreases significantly the envelope binding energy for the remaining evolution. Comparing accretor stars from self-consistent binary models to stars evolved as single, we demonstrate that the rejuvenation can lower the energy required to eject a CE by ∼42%–96% for both black hole and neutron star progenitors, depending on the evolutionary stage and final orbital separation. Therefore, binaries experiencing first stable mass transfer may more easily survive subsequent CE events and result in possibly wider final separations compared to current predictions. Despite their high mass, our accretors also experience extended “blue loops,” which may have observational consequences for low-metallicity stellar populations and asteroseismology. 
    more » « less
  3. Abstract

    We present the first X-ray census of fast radio burst (FRB) host galaxies to conduct the deepest search for active galactic nuclei (AGN) and X-ray counterparts to date. Our sample includes seven well-localized FRBs with unambiguous host associations and existing deep Chandra observations, including two events for which we present new observations. We find evidence for AGN in two FRB host galaxies based on the presence of X-ray emission coincident with their centers, including the detection of a luminous (LX≈ 5 × 1042erg s−1) X-ray source at the nucleus of FRB 20190608B’s host, for which we infer an SMBH mass ofMBH∼ 108Mand an Eddington ratioLbol/LEdd≈ 0.02, characteristic of geometrically thin disks in Seyfert galaxies. We also report nebular emission-line fluxes for 24 highly secure FRB hosts (including 10 hosts for the first time), and assess their placement on a BPT diagram, finding that FRB hosts trace the underlying galaxy population. We further find that the hosts of repeating FRBs are not confined to the star-forming locus, contrary to previous findings. Finally, we place constraints on associated X-ray counterparts to FRBs in the context of ultraluminous X-ray sources (ULXs), and find that existing X-ray limits for FRBs rule out ULXs brighter thanLX≳ 1040erg s−1. Leveraging the CHIME/FRB catalog and existing ULX catalogs, we search for spatially coincident ULX–FRB pairs. We identify a total of 28 ULXs spatially coincident with the localization regions for 17 FRBs, but find that the DM-inferred redshifts for the FRBs are inconsistent with the ULX redshifts, disfavoring an association between these specific ULX–FRB pairs.

     
    more » « less
  4. Abstract The contemporaneous detection of gravitational waves and gamma rays from GW170817/GRB 170817A, followed by kilonova emission a day after, confirmed compact binary neutron star mergers as progenitors of short-duration gamma-ray bursts (GRBs) and cosmic sources of heavy r -process nuclei. However, the nature (and life span) of the merger remnant and the energy reservoir powering these bright gamma-ray flashes remains debated, while the first minutes after the merger are unexplored at optical wavelengths. Here, we report the earliest discovery of bright thermal optical emission associated with short GRB 180618A with extended gamma-ray emission—with ultraviolet and optical multicolor observations starting as soon as 1.4 minutes post-burst. The spectrum is consistent with a fast-fading afterglow and emerging thermal optical emission 15 minutes post-burst, which fades abruptly and chromatically (flux density F ν ∝ t − α , α = 4.6 ± 0.3) just 35 minutes after the GRB. Our observations from gamma rays to optical wavelengths are consistent with a hot nebula expanding at relativistic speeds, powered by the plasma winds from a newborn, rapidly spinning and highly magnetized neutron star (i.e., a millisecond magnetar), whose rotational energy is released at a rate L th ∝ t −(2.22±0.14) to reheat the unbound merger-remnant material. These results suggest that such neutron stars can survive the collapse to a black hole on timescales much larger than a few hundred milliseconds after the merger and power the GRB itself through accretion. Bright thermal optical counterparts to binary merger gravitational wave sources may be common in future wide-field fast-cadence sky surveys. 
    more » « less
  5. ABSTRACT

    We present early spectral observations of the very slow Galactic nova Gaia22alz, over its gradual rise to peak brightness that lasted 180 d. During the first 50 d, when the nova was only 3–4 mag above its normal brightness, the spectra showed narrow (FWHM ≈ 400 km s−1) emission lines of H Balmer, He i, He ii, and C iv but no P Cygni absorption. A few weeks later, the high-excitation He ii and C iv lines disappeared, and P Cygni profiles of Balmer, He i, and eventually Fe ii lines emerged, yielding a spectrum typical of classical novae before peak. We propose that the early (first 50 d) spectra of Gaia22alz, particularly the emission lines with no P Cygni profiles, are produced in the white dwarf’s optically thin envelope or accretion disc, reprocessing ultraviolet and potentially X-ray emission from the white dwarf after a dramatic increase in the rate of thermonuclear reactions, during a phase known as the ‘early X-ray/UV flash’. If true, this would be one of the rare times that the optical signature of the early X-ray/UV flash has been detected. While this phase might last only a few hours in other novae and thus be easily missed, it was possible to detect in Gaia22alz due to its very slow and gradual rise and thanks to the efficiency of new all-sky surveys in detecting transients on their rise. We also consider alternative scenarios that could explain the early spectral features of Gaia22alz and its gradual rise.

     
    more » « less
  6. Abstract We present new radio and optical data, including very-long-baseline interferometry, as well as archival data analysis, for the luminous, decades-long radio transient FIRST J141918.9+394036. The radio data reveal a synchrotron self-absorption peak around 0.3 GHz and a radius of around 1.3 mas (0.5 pc) 26 yr post-discovery, indicating a blastwave energy ∼5 × 10 50 erg. The optical spectrum shows a broad [O iii ] λ 4959,5007 emission line that may indicate collisional excitation in the host galaxy, but its association with the transient cannot be ruled out. The properties of the host galaxy are suggestive of a massive stellar progenitor that formed at low metallicity. Based on the radio light curve, blastwave velocity, energetics, nature of the host galaxy and transient rates, we find that the properties of J1419+3940 are most consistent with long gamma-ray burst (LGRB) afterglows. Other classes of (optically discovered) stellar explosions as well as neutron star mergers are disfavored, and invoking any exotic scenario may not be necessary. It is therefore likely that J1419+3940 is an off-axis LGRB afterglow (as suggested by Law et al. and Marcote et al.), and under this premise the inverse beaming fraction is found to be f b − 1 ≃ 280 − 200 + 700 , corresponding to an average jet half-opening angle < θ j > ≃ 5 − 2 + 4 degrees (68% confidence), consistent with previous estimates. From the volumetric rate we predict that surveys with the Very Large Array, Australian Square Kilometre Array Pathfinder, and MeerKAT will find a handful of J1419+3940-like events over the coming years. 
    more » « less
  7. Abstract The recent detection of GW190521 stimulated ideas on how to populate the predicted black hole (BH) pair-instability (PI) mass gap. One proposal is the dynamical merger of two stars below the PI regime forming a star with a small core and an oversized envelope. We outline the main challenges this scenario faces to form one BH in the gap. In particular, the core needs to avoid growing during the merger, and the merger product needs to retain enough mass, including in the subsequent evolution, and at core collapse (CC). We explore this scenario with detailed stellar evolution calculations, starting with ad hoc initial conditions enforcing no core growth during the merger. We find that these massive merger products are likely to be helium-rich and spend most of their remaining lifetime within regions of instabilities in the Herzsprung–Russell diagram, such as luminous blue variable eruptions. An energetic estimate of the amount of mass loss neglecting the back reaction of the star suggests that the total amount of mass that can be removed at low metallicity is ≲1 M ⊙ . This is small enough that at CC our models are retaining sufficient mass to form BHs in the PI gap similar to the recent ones detected by LIGO/Virgo. However, mass loss at the time of merger, the resulting core structure, and the mass loss at CC still need to be quantified for these models to confirm the viability of this scenario. 
    more » « less
  8. Abstract GW190814 was a compact object binary coalescence detected in gravitational waves by Advanced LIGO and Advanced Virgo that garnered exceptional community interest due to its excellent localization and the uncertain nature of the binary’s lighter-mass component (either the heaviest known neutron star, or the lightest known black hole). Despite extensive follow-up observations, no electromagnetic counterpart has been identified. Here, we present new radio observations of 75 galaxies within the localization volume at Δ t ≈ 35–266 days post-merger. Our observations cover ∼32% of the total stellar luminosity in the final localization volume and extend to later timescales than previously reported searches, allowing us to place the deepest constraints to date on the existence of a radio afterglow from a highly off-axis relativistic jet launched during the merger (assuming that the merger occurred within the observed area). For a viewing angle of ∼46° (the best-fit binary inclination derived from the gravitational wave signal) and assumed electron and magnetic field energy fractions of ϵ e = 0.1 and ϵ B = 0.01, we can rule out a typical short gamma-ray burst-like Gaussian jet with an opening angle of 15° and isotropic-equivalent kinetic energy 2 × 10 51 erg propagating into a constant-density medium n ≳ 0.1 cm −3 . These are the first limits resulting from a galaxy-targeted search for a radio counterpart to a gravitational wave event, and we discuss the challenges—and possible advantages—of applying similar search strategies to future events using current and upcoming radio facilities. 
    more » « less