skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mey, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Salt marsh ecosystems are underrepresented in process‐based models due to their unique location across the terrestrial–aquatic interface. Particularly, the role of leaf nutrients on canopy photosynthesis (FA) remains unclear, despite their relevance for regulating vegetation growth. We combined multiyear information of canopy‐level nutrients and eddy covariance measurements with canopy surface hyperspectral remote sensing (CSHRS) to quantify the spatial and temporal variability of FAin a temperate salt marsh. We found that FAshowed a positive relationship with canopy‐level N at the ecosystem scale and for areas dominated bySpartina cynosuroides, but not for areas dominated by shortS. alterniflora. FAshowed a positive relationship with canopy‐level P, K, and Na, but a negative relationship with Fe, for areas associated withS. cynosuroides,S. alterniflora, and at the ecosystem scale. We used partial least squares regression (PLSR) with CSHRS and found statistically significant data–model agreements to predict canopy‐level nutrients and FA. The red‐edge electromagnetic region and ∼770 nm showed the highest contribution of variance in PLSR models for canopy‐level nutrients and FA, but we propose that underlying sediment biogeochemistry can complicate interpretation of reflectance measurements. Our findings highlight the relevance of spatial variability in salt marshes vegetation and the promising application of CSHRS for linking information of canopy‐level nutrients with FA. We call for further development of canopy surface hyperspectral methods and analyses across salt marshes to improve our understanding of how these ecosystems will respond to global environmental change. 
    more » « less