skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meyer, Rachel S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mimulus laciniatus (syn. Erythranthe lacinata) is an annual plant endemic to the Sierra Nevada region of California. Mimulus laciniatus is notable for its specialized ecological niche, thriving in granite outcrops of alpine environments characterized by shallow soils that dry out rapidly as the snowpack is exhausted during season-ending droughts. Due to its narrow habitat range and sensitivity to environmental change, this species serves as an important model for studying adaptation and survival in marginal habitats. As part of the California Conservation Genomics Project, here we report the sequencing and assembly of a high-quality nuclear genome and chloroplast genome of M. laciniatus. The primary assembly is 309.96 Mb and consists of 104 scaffolds with a scaffold N50 of 20.99 Mb, a largest contig size of 24.29 Mb and a contig N50 of 11.09 Mb, The alternate haplotype assembly consists of 194 scaffolds spanning 213.84 Mb. BUSCO completeness of the primary assembly is 98.6%. This high quality genome adds a valuable resource to the expanding collection of sequenced genomes of the monkeyflowers (Mimulus sensu lato), which have become a model clade for studying ecological adaptation, speciation, and evolutionary genetics. 
    more » « less
    Free, publicly-accessible full text available August 28, 2026
  2. Coaker, Gitta (Ed.)
  3. Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways towards mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future. 
    more » « less