skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mezei, Márk"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract We study a sector of the 5d maximally supersymmetric Yang-Mills theory on S 5 consisting of 1 / 8-BPS Wilson loop operators contained within a great S 3 inside S 5 . We conjecture that these observables are described by a 3d Chern Simons theory on S 3 , analytically continued to a pure imaginary Chern-Simons level. Therefore, the expectation values of these 5d Wilson loops compute knot invariants. We verify this conjecture in the weakly-coupled regime from explicit Feynman diagram computations. At strong coupling, these Wilson loop operators lift to 1 / 8-BPS surface operators in the 6d (2 , 0) theory on S 1 × S 5 . Using AdS/CFT, we show that these surface operators are dual to M2-branes subject to certain calibration conditions required in order to preserve supersymmetry. We compute the renormalized action of a large class of calibrated M2-branes and obtain a perfect match with the field theory prediction. Finally, we present a derivation of the 3d Chern-Simons theory from 5d super-Yang-Mills theory using supersymmetric localization, modulo a subtle issue that we discuss. 
    more » « less