skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mezghanni, Zeineb"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work, we study how the abundance and dynamics of populations of disrupting satellite galaxies change systematically as a function of host galaxy properties. We apply a theoretical model of the phase-mixing process to classify intact satellite galaxies and stellar streamlike and shell-like debris in ∼1500 Milky Way–mass systems generated by a semi-analytic galaxy formation code,SatGen. In particular, we test the effect of host galaxy halo mass, disk mass, ratio of disk scale height to length, and stellar feedback model on disrupting satellite populations. We find that the counts of tidal debris are consistent across all host galaxy models, within a given host mass range, and that all models can have streamlike debris on low-energy orbits, consistent with that observed around the Milky Way. However, we find a preference for streamlike debris on lower-energy orbits in models with a thicker (lower-density) host disk or on higher-energy orbits in models with a more massive host disk. Importantly, we observe significant halo-to-halo variance across all models. These results highlight the importance of simulating and observing large samples of Milky Way–mass galaxies and accounting for variations in host properties when using disrupting satellites in studies of near-field cosmology. 
    more » « less
    Free, publicly-accessible full text available September 4, 2026