With recent advances in multi‐modal foundation models, the previously text‐only large language models (LLM) have evolved to incorporate visual input, opening up unprecedented opportunities for various applications in visualization. Compared to existing work on LLM‐based visualization works that generate and control visualization with textual input and output only, the proposed approach explores the utilization of the visual processing ability of multi‐modal LLMs to develop Autonomous Visualization Agents (AVAs) that can evaluate the generated visualization and iterate on the result to accomplish user‐defined objectives defined through natural language. We propose the first framework for the design of AVAs and present several usage scenarios intended to demonstrate the general applicability of the proposed paradigm. Our preliminary exploration and proof‐of‐concept agents suggest that this approach can be widely applicable whenever the choices of appropriate visualization parameters require the interpretation of previous visual output. Our study indicates that AVAs represent a general paradigm for designing intelligent visualization systems that can achieve high‐level visualization goals, which pave the way for developing expert‐level visualization agents in the future.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available June 1, 2025 -
Abstract We present UV–optical–near-infrared observations and modeling of supernova (SN) 2024ggi, a type II supernova (SN II) located in NGC 3621 at 7.2 Mpc. Early-time (“flash”) spectroscopy of SN 2024ggi within +0.8 days of discovery shows emission lines of H
i , Hei , Ciii , and Niii with a narrow core and broad, symmetric wings (i.e., “IIn-like”) arising from the photoionized, optically thick, unshocked circumstellar material (CSM) that surrounded the progenitor star at shock breakout (SBO). By the next spectral epoch at +1.5 days, SN 2024ggi showed a rise in ionization as emission lines of Heii , Civ , Niv/v , and Ov became visible. This phenomenon is temporally consistent with a blueward shift in the UV–optical colors, both likely the result of SBO in an extended, dense CSM. The IIn-like features in SN 2024ggi persist on a timescale oft IIn= 3.8 ± 1.6 days, at which time a reduction in CSM density allows the detection of Doppler-broadened features from the fastest SN material. SN 2024ggi has peak UV–optical absolute magnitudes ofM w2= −18.7 mag andM g= −18.1 mag, respectively, that are consistent with the known population of CSM-interacting SNe II. Comparison of SN 2024ggi with a grid of radiation hydrodynamics and non–local thermodynamic equilibrium radiative-transfer simulations suggests a progenitor mass-loss rate of yr−1(v w = 50 km s−1), confined to a distance ofr < 5 × 1014cm. Assuming a wind velocity ofv w = 50 km s−1, the progenitor star underwent an enhanced mass-loss episode in the last ∼3 yr before explosion.Free, publicly-accessible full text available September 5, 2025 -
Abstract Excitonic insulators are usually considered to form via the condensation of a soft charge mode of bound electron-hole pairs. This, however, presumes that the soft exciton is of spin-singlet character. Early theoretical considerations have also predicted a very distinct scenario, in which the condensation of magnetic excitons results in an antiferromagnetic excitonic insulator state. Here we report resonant inelastic x-ray scattering (RIXS) measurements of Sr3Ir2O7. By isolating the longitudinal component of the spectra, we identify a magnetic mode that is well-defined at the magnetic and structural Brillouin zone centers, but which merges with the electronic continuum in between these high symmetry points and which decays upon heating concurrent with a decrease in the material’s resistivity. We show that a bilayer Hubbard model, in which electron-hole pairs are bound by exchange interactions, consistently explains all the electronic and magnetic properties of Sr3Ir2O7indicating that this material is a realization of the long-predicted antiferromagnetic excitonic insulator phase.
-
Abstract We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time (
flash ) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of Hi , Hei/ii , Civ , and Niii/iv/v with a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density atr ≳ 1015cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g.,M u = −18.6 mag,M g = −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer codeCMFGEN and the radiation-hydrodynamics codeHERACLES suggests dense, solar-metallicity CSM confined tor = (0.5–1) × 1015cm, and a progenitor mass-loss rate of yr−1. For the assumed progenitor wind velocity ofv w = 50 km s−1, this corresponds to enhanced mass loss (i.e.,superwind phase) during the last ∼3–6 yr before explosion. -
null (Ed.)Abstract. This paper investigates the spatial differences in fresh vegetable spending in Guilford County, North Carolina. We create a geo-coded spatial-temporal database for both human factors and natural factors to understand why food deserts have become a serious issue in a county with many farming activities. We find that residents living in food deserts do not buy enough fresh vegetables compared with their counterparts, even when they are shopping at full-service grocery stores. Social-economic factors are most sensitive and are important determinants of fresh food demand. Using an agent-based toy model, we find that fresh vegetable demand in each census tract in Guilford County varies to a large extent. The results suggest that the formation of food deserts may root from the demand side.more » « less
-
ABSTRACT We present optical and near-infrared (NIR) observations of the Type Icn supernova (SN Icn) 2022ann, the fifth member of its newly identified class of SNe. Its early optical spectra are dominated by narrow carbon and oxygen P-Cygni features with absorption velocities of ∼800 km s−1; slower than other SNe Icn and indicative of interaction with a dense, H/He-poor circumstellar medium (CSM) that is outflowing slower than typical Wolf–Rayet wind velocities of >1000 km s−1. We identify helium in NIR spectra 2 weeks after maximum and in optical spectra at 3 weeks, demonstrating that the CSM is not fully devoid of helium. Unlike other SNe Icn, the spectra of SN 2022ann never develop broad features from SN ejecta, including in the nebular phase. Compared to other SNe Icn, SN 2022ann has a low luminosity (o-band absolute magnitude of ∼−17.7), and evolves slowly. The bolometric light curve is well-modelled by 4.8 M⊙ of SN ejecta interacting with 1.3 M⊙ of CSM. We place an upper limit of 0.04 M⊙ of 56Ni synthesized in the explosion. The host galaxy is a dwarf galaxy with a stellar mass of 107.34 M⊙ (implied metallicity of log(Z/Z⊙) ≈ 0.10) and integrated star-formation rate of log (SFR) = −2.20 M⊙ yr−1; both lower than 97 per cent of galaxies observed to produce core-collapse supernovae, although consistent with star-forming galaxies on the galaxy Main Sequence. The low CSM velocity, nickel and ejecta masses, and likely low-metallicity environment disfavour a single Wolf–Rayet progenitor star. Instead, a binary companion is likely required to adequately strip the progenitor and produce a low-velocity outflow.