skip to main content

Search for: All records

Creators/Authors contains: "Miao, Maosheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Using first-principles calculations and crystal structure search methods, we found that many covalently bonded molecules such as H2, N2, CO2, NH3, H2O and CH4 may react with NaCl, a prototype ionic solid, and form stable compounds under pressure while retaining their molecular structure. These molecules, despite whether they are homonuclear or heteronuclear, polar or non-polar, small or large, do not show strong chemical interactions with surrounding Na and Cl ions. In contrast, the most stable molecule among all examples, N2, is found to transform into cyclo-N5− anions while reacting with NaCl under high pressures. It provides a new route to synthesize pentazolates, which are promising green energy materials with high energy density. Our work demonstrates a unique and universal hybridization propensity of covalently bonded molecules and solid compounds under pressure. This surprising miscibility suggests possible mixing regions between the molecular and rock layers in the interiors of large planets.

    more » « less
  2. Most metals adopt simple structures such as body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed (HCP) structures in specific groupings across the periodic table, and many undergo transitions to surprisingly complex structures on compression, not expected from conventional free-electron-based theories of metals. First-principles calculations have been able to reproduce many observed structures and transitions, but a unified, predictive theory that underlies this behavior is not yet in hand. Discovered by analyzing the electronic properties of metals in various lattices over a broad range of sizes and geometries, a remarkably simple theory shows that the stability of metal structures is governed by electrons occupying local interstitial orbitals and their strong chemical interactions. The theory provides a basis for understanding and predicting structures in solid compounds and alloys over a broad range of conditions. 
    more » « less
  3. Abstract Studies of molecular mixtures containing hydrogen sulfide (H 2 S) could open up new routes towards hydrogen-rich high-temperature superconductors under pressure. H 2 S and ammonia (NH 3 ) form hydrogen-bonded molecular mixtures at ambient conditions, but their phase behavior and propensity towards mixing under pressure is not well understood. Here, we show stable phases in the H 2 S–NH 3 system under extreme pressure conditions to 4 Mbar from first-principles crystal structure prediction methods. We identify four stable compositions, two of which, (H 2 S) (NH 3 ) and (H 2 S) (NH 3 ) 4 , are stable in a sequence of structures to the Mbar regime. A re-entrant stabilization of (H 2 S) (NH 3 ) 4 above 300 GPa is driven by a marked reversal of sulfur-hydrogen chemistry. Several stable phases exhibit metallic character. Electron–phonon coupling calculations predict superconducting temperatures up to 50 K, in the Cmma phase of (H 2 S) (NH 3 ) at 150 GPa. The present findings shed light on how sulfur hydride bonding and superconductivity are affected in molecular mixtures. They also suggest a reservoir for hydrogen sulfide in the upper mantle regions of icy planets in a potentially metallic mixture, which could have implications for their magnetic field formation. 
    more » « less