skip to main content


Search for: All records

Creators/Authors contains: "Miao, Zhengjie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we demonstrate CaJaDE (Context-Aware Join-Augmented Deep Explanations), a system that explains query results by augmenting provenance with contextual information from other related tables in the database. Given two query results whose difference the user wants to understand, we enumerate possible ways of joining the provenance (i.e., contributing input tuples) of these two query results with tuples from other relevant tables in the database that were not used in the query. We use patterns to concisely explain the difference between the augmented provenance of the two query results. CaJaDE, through a comprehensive UI, enables the user to formulate questions and explore explanations interactively. 
    more » « less
  2. null (Ed.)
    In many data analysis applications there is a need to explain why a surprising or interesting result was produced by a query. Previous approaches to explaining results have directly or indirectly relied on data provenance, i.e., input tuples contributing to the result(s) of interest. However, some information that is relevant for explaining an answer may not be contained in the provenance. We propose a new approach for explaining query results by augmenting provenance with information from other related tables in the database. Using a suite of optimization techniques, we demonstrate experimentally using real datasets and through a user study that our approach produces meaningful results and is efficient. 
    more » « less
  3. Home People Research Publications Courses Jobs Seminars Contact Going Beyond Provenance: Explaining Query Answers with Pattern-based Counterbalances Authors Zhengjie Miao Qitian Zeng Boris Glavic Sudeepa Roy Materials Abstract Provenance and intervention-based techniques have been used to explain surprisingly high or low outcomes of aggregation queries. However, such techniques may miss interesting explanations emerging from data that is not in the provenance. For instance, an unusually low number of publications of a prolific researcher in a certain venue and year can be explained by an increased number of publications in another venue in the same year. We present a novel approach for explaining outliers in aggregation queries through counterbalancing. That is, explanations are outliers in the opposite direction of the outlier of interest. Outliers are defined w.r.t. patterns that hold over the data in aggregate. We present efficient methods for mining such aggregate regression patterns (ARPs), discuss how to use ARPs to generate and rank explanations, and experimentally demonstrate the efficiency and effectiveness of our approach. 
    more » « less