Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
High dimensional piecewise stationary graphical models represent a versatile class for modelling time varying networks arising in diverse application areas, including biology, economics, and social sciences. There has been recent work in offline detection and estimation of regime changes in the topology of sparse graphical models. However, the online setting remains largely unexplored, despite its high relevance to applications in sensor networks and other engineering monitoring systems, as well as financial markets. To that end, this work introduces a novel scalable online algorithm for detecting an unknown number of abrupt changes in the inverse covariance matrix of sparse Gaussian graphical models with small delay. The proposed algorithm is based upon monitoring the conditional log-likelihood of all nodes in the network and can be extended to a large class of continuous and discrete graphical models. We also investigate asymptotic properties of our procedure under certain mild regularity conditions on the graph size, sparsity level, number of samples, and pre- and post-changes in the topology of the network. Numerical works on both synthetic and real data illustrate the good performance of the proposed methodology both in terms of computational and statistical efficiency across numerous experimental settings.more » « less
-
The wear of materials continues to be a limiting factor in the lifetime and performance of mechanical systems with sliding surfaces. As the demand for low wear materials grows so does the need for models and methods to systematically optimize tribological systems. Elastic foundation models offer a simplified framework to study the wear of multimaterial composites subject to abrasive sliding. Previously, the evolving wear profile has been shown to converge to a steady-state that is characterized by a time-independent elliptic equation. In this article, the steady-state formulation is generalized and integrated with shape optimization to improve the wear performance of bi-material composites. Both macroscopic structures and periodic material microstructures are considered. Several common tribological objectives for systems undergoing wear are identified and mathematically formalized with shape derivatives. These include (i) achieving a planar wear surface from multimaterial composites and (ii) minimizing the run-in volume of material lost before steady-state wear is achieved. A level-set based topology optimization algorithm that incorporates a novel constraint on the level-set function is presented. In particular, a new scheme is developed to update material interfaces; the scheme (i) conveniently enforces volume constraints at each iteration, (ii) controls the complexity of design features using perimeter penalization, and (iii) nucleates holes or inclusions with the topological gradient. The broad applicability of the proposed formulation for problems beyond wear is discussed, especially for problems where convenient control of the complexity of geometric features is desired.more » « less