- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Barnard, James_P (2)
-
Mihalko, Claire_A (2)
-
Wang, Haiyan (2)
-
Bhatt, Nirali_A (1)
-
Choudhury, Abhijeet (1)
-
He, Zihao (1)
-
Huang, Jialong (1)
-
Jian, Jie (1)
-
Kunhung_Tsai, Benson (1)
-
Lu, Juanjuan (1)
-
Phuah, Xin_Li (1)
-
Quigley, Lizabeth (1)
-
Shen, Jianan (1)
-
Wang, Haohan (1)
-
Xu, Xiaoshan (1)
-
Zhang, Yizhi (1)
-
Zhou, Shiyu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The unique redox properties and high oxygen capacity of nanostructured CeO2demonstrate a wide range of applications, such as electrolytes for solid oxide fuel cells, gas sensors, and catalysis for automotive exhaust gas. Most CeO2nanomaterials are prepared by chemical synthesis or hard templating methods. An effective way to obtain highly textured, small‐radius dimensions with high specific surface area remains challenging. Here, highly textured CeO2nanostructures with various shapes ranging from nanowires to nanoporous thin films are successfully synthesized. Vertically aligned nanocomposites (VANs) of Sr3Al2O6(SAO) and CeO2are synthesized first while varying concentration ratio between them. Once the SAO is dissolved in water, the remaining CeO2forms distinct nanostructures. The thermal stability of the nanostructured CeO2is evaluated byin situheating XRD and thermal annealing tests. This method provides an alternative approach to preparing nanostructured CeO2without toxic chemical solutions or complex micro/nanofabrication techniques. These results present a novel approach to prepare nanostructured CeO2for future sensing and energy device applications.more » « less
-
He, Zihao; Jian, Jie; Quigley, Lizabeth; Bhatt, Nirali_A; Barnard, James_P; Mihalko, Claire_A; Wang, Haohan; Phuah, Xin_Li; Lu, Juanjuan; Xu, Xiaoshan; et al (, Advanced Physics Research)Abstract Mott insulator VO2exhibits an ultrafast and reversible semiconductor‐to‐metal transition (SMT) near 340 K (67 °C). In order to fulfill the multifunctional device applications, effective transition temperature (Tc) tuning as well as integrated functionality in VO2is desired. In this study, multifunctionalities including tailorable SMT characteristics, ferromagnetic (FM) integration, and magneto‐optical (MO) coupling, have been demonstrated via metal/VO2nanocomposite designs with controlled morphology, i.e., a two‐phase Ni/VO2pillar‐in‐matrix geometry and a three‐phase Au/Ni/VO2particle‐in‐matrix geometry. EvidentTcreduction of 20.4 to 54.9 K has been achieved by morphology engineering. Interestingly, the Au/Ni/VO2film achieves a record‐lowTcof 295.2 K (22.2 °C), slightly below room temperature (25 °C). The change in film morphology is also correlated with unique property tuning. Highly anisotropic magnetic and optical properties have been demonstrated in Ni/VO2film, whereas Au/Ni/VO2film exhibits isotropic properties because of the uniform distribution of Au/Ni nanoparticles. Furthermore, a strong MO coupling with enhanced magnetic coercivity and anisotropy is demonstrated for both films, indicating great potential for optically active property tuning. This demonstration opens exciting opportunities for the VO2‐based device implementation towards smart windows, next‐generation optical‐coupled switches, and spintronic devices.more » « less
An official website of the United States government
