skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mikaelyan, Aram"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Blow flies (Lucilia sericataandPhormia regina) are necrophagous insects that interact with dense microbial reservoirs and are opportunistic vectors of human and animal pathogens. Despite constant exposure to diverse environmental microbes, it is unclear whether their bacterial communities are primarily acquired stochastically or shaped by host factors that could influence pathogen carriage. We conducted a systematic comparison of wildL. sericataandP. reginacollected from seven cities across an urban-rural gradient to determine whether microbiome composition is structured by host species identity or environmental variables. Using 16S rRNA gene sequencing of individual flies, we profiled bacterial communities and applied alpha- and beta-diversity analyses, PERMANOVA, and Random Forest classification to quantify species-level microbiome differentiation. Species identity was the strongest predictor of microbiome composition (PERMANOVA,p = 0.001), while location, land cover type, sampling month, and sex had no significant effects. Random Forest modeling identified multiple bacterial taxa that consistently distinguished the two species, includingIgnatzschineriaandDysgonomonas, which were enriched inP. regina, andVagococcusandEscherichia-Shigella, which were enriched inL. sericata. These taxa are of clinical relevance, withIgnatzschineriain particular increasingly reported from human myiasis and soft-tissue infections, sometimes exhibiting antimicrobial resistance. Our findings demonstrate that wild blow flies maintain species-specific microbiomes despite shared environments, suggesting that host identity strongly filters microbial communities. The presence of opportunistic pathogens within these structured microbiomes underscores the need to understand how blow fly–microbe associations contribute to pathogen persistence and dissemination. By revealing predictable, species-dependent microbiome patterns, this study highlights potential targets for microbiome-based strategies aimed at mitigating blow fly–associated disease risks. 
    more » « less
    Free, publicly-accessible full text available November 27, 2026
  2. Improving science literacy is crucial amidst global challenges like climate change, emerging diseases, AI, and rampant disinformation. This is vital not only for future STEM generations but for all, to make informed decisions. Informal science communication efforts such as podcasts, popular science articles, and museum events are an essential part of the infrastructure for mobilizing knowledge and nurturing science literacy. However, in thisPerspective, we emphasize the need to grow our capacity for STEM outreach in the formal K-12 classroom. While the majority of informal outreach mechanisms require audience members to seek out content, classrooms include those hard-to-reach target audiences that are not already STEM-engaged. We contrast the multitude of resources that have been developed to support informal outreach in recent decades with a relative paucity of such efforts in the K-12 formal classroom realm. We advocate for a more balanced deployment of resources and efforts between these two vital components of our knowledge mobilization and STEM engagement infrastructure. In particular, we highlight the key role of K-12 teachers as conduits for knowledge dissemination and the need for greater collaboration between scientists and teachers at individual and organizational levels. We also advocate for greater collaboration across programs in both the informal and formal outreach space, and dedicated effort to construct dissemination networks to share outreach materials at scale across disparate programs. The aim of our piece is to generate discussion about how we might refocus goals, funding mechanisms, and policies to grow the science-engaged society necessary to confront future challenges. 
    more » « less
  3. Abstract Decaying wood, while an abundant and stable resource, presents considerable nutritional challenges due to its structural rigidity, chemical recalcitrance, and low nitrogen content. Despite these challenges, certain insect lineages have successfully evolved saproxylophagy (consuming and deriving sustenance from decaying wood), impacting nutrient recycling in ecosystems and carbon sequestration dynamics. This study explores the uneven phylogenetic distribution of saproxylophagy across insects and delves into the evolutionary origins of this trait in disparate insect orders. Employing a comprehensive analysis of gut microbiome data, from both saproxylophagous insects and their non‐saproxylophagous relatives, including new data from unexplored wood‐feeding insects, this Hypothesis paper discusses the broader phylogenetic context and potential adaptations necessary for this dietary specialization. The study proposes the “Detritivore‐First Hypothesis,” suggesting an evolutionary pathway to saproxylophagy through detritivory, and highlights the critical role of symbiotic gut microbiomes in the digestion of decaying wood. 
    more » « less
  4. IntroductionWood digestion in insects relies on the maintenance of a mosaic of numerous microhabitats, each colonized by distinct microbiomes. Understanding the division of digestive labor between these microhabitats- is central to understanding the physiology and evolution of symbiotic wood digestion. A microhabitat that has emerged to be of direct relevance to the process of lignocellulose digestion is the surface of ingested plant material. Wood particles in the guts of some termites are colonized by a specialized bacterial fiber-digesting microbiome, but whether this represents a widespread strategy among insect lineages that have independently evolved wood-feeding remains an open question. MethodsIn this study, we investigated the bacterial communities specifically associated with wood fibers in the gut of the passalid beetleOdontotaenius disjunctus. We developed a Percoll-based centrifugation method to isolate and enrich the wood particles from the anterior hindgut, allowing us to access the wood fibers and their associated microbiome. We then performed assays of enzyme activity and used short-read and long-read amplicon sequencing of the 16S rRNA gene to identify the composition of the fiber-associated microbiome. ResultsOur assays demonstrated that the anterior hindgut, which houses a majority of the bacterial load, is an important site for lignocellulose digestion. Wood particles enriched from the anterior hindgut contribute to a large proportion of the total enzyme activity. The sequencing revealed thatO. disjunctus, like termites, harbors a distinct fiber-associated microbiome, but notably, its community is enriched in insect-specific groups ofLactococcusandTuricibacter. DiscussionOur study underscores the importance of microhabitats in fostering the complex symbiotic relationships between wood-feeding insects and their microbiomes. The discovery of distinct fiber-digesting symbionts inO. disjunctus, compared to termites, highlights the diverse evolutionary paths insects have taken to adapt to a challenging diet. 
    more » « less
  5. Abstract Blow flies (Diptera: Calliphoridae) occur worldwide and exhibit a wide range of larval feeding habits, including saprophagy, coprophagy, parasitism and predation. Understanding their biology is critical for medical and veterinary science and ecology. Calliphorids thrive across a range of habitats and exhibit complex life histories, with larvae developing immersed in their food substrate, while adults are free‐living and have diverse feeding strategies. Some species have evolved specialized parasitic associations with vertebrate or invertebrate hosts, which are behaviors with important implications for agriculture and for understanding evolutionary transitions between saprophagy and parasitism. This study presents a comprehensive phylogenetic analysis of the Calliphoridae, utilizing 711 of 736 analysed nuclear genes, using anchored hybrid enrichment, from a global collection of blow flies and their relatives. Our results provide a robust and novel reconstruction of the evolutionary history of this group, pinpointing major transitions in larval feeding habits. We argue that saprophagy evolved independently multiple times from invertebrate parasitic ancestors, with vertebrate parasitism emerging from a number of different feeding strategies. These findings challenge prior hypotheses and offer new insights into the adaptive traits driving trophic specialization and diversification in this group. 
    more » « less
    Free, publicly-accessible full text available December 12, 2026