- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Campbell, Kenneth S (1)
-
Campbell, Kenneth S. (1)
-
Campbell, Stuart G. (1)
-
De_Groote, Friedl (1)
-
Lewalle, Alex (1)
-
Milburn, Gregory N (1)
-
Milburn, Gregory N. (1)
-
Niederer, Steven A. (1)
-
Simha, Surabhi N (1)
-
Ting, Lena H (1)
-
van_der_Zee, Tim J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Musculoskeletal simulations can offer valuable insight into how the properties of our musculoskeletal system influence the biomechanics of our daily movements. One such property is muscle’s history-dependent initial resistance to stretch, also known as short-range stiffness, which is key to stabilizing movements in response to external perturbations. Short-range stiffness is poorly captured by existing musculoskeletal simulations since they employ phenomenological Hill-type muscle models that lack the mechanisms underlying short-range stiffness. While it has been previously shown that biophysical cross-bridge models can reproduce muscle short-range-stiffness, it is unclear which specific biophysical properties are necessary to capture history-dependent muscle force responses in behaviorally relevant conditions. Here, we tested the ability of various biophysical cross-bridge models to reproduce empirical short-range stiffness and its history-dependent changes across a broad range of behaviorally relevant length changes and activation levels, using an existing dataset on permeabilized rat soleus muscle fibers (N = 11). We found that a biophysical cross-bridge model with cooperative myofilament activation reproduced the effects of muscle activation (R2= 0.86), stretch amplitude (R2= 0.71) and isometric recovery time (R2= 0.79) on history-dependent changes in short-range stiffness after shortening. Similar results were obtained when the cross-bridge distribution of the biophysical model was approximated by a Gaussian (R2= 0.73 - 0.88), but at a 20 times lower computational cost. These effects could not be reproduced by either a biophysical cross-bridge model without cooperative myofilament activation or a Hill-type model (R2< 0.5). The reduced computational demand of the Gaussian-approximated models facilitates implementing biophysical cross-bridge models with cooperative myofilament activation in musculoskeletal simulations to improve the prediction of short-range stiffness during movements.more » « lessFree, publicly-accessible full text available November 3, 2026
-
Lewalle, Alex; Campbell, Kenneth S.; Campbell, Stuart G.; Milburn, Gregory N.; Niederer, Steven A. (, Journal of General Physiology)Myofilaments and their associated proteins, which together constitute the sarcomeres, provide the molecular-level basis for contractile function in all muscle types. In intact muscle, sarcomere-level contraction is strongly coupled to other cellular subsystems, in particular the sarcolemmal membrane. Skinned muscle preparations (where the sarcolemma has been removed or permeabilized) are an experimental system designed to probe contractile mechanisms independently of the sarcolemma. Over the last few decades, experiments performed using permeabilized preparations have been invaluable for clarifying the understanding of contractile mechanisms in both skeletal and cardiac muscle. Today, the technique is increasingly harnessed for preclinical and/or pharmacological studies that seek to understand how interventions will impact intact muscle contraction. In this context, intrinsic functional and structural differences between skinned and intact muscle pose a major interpretational challenge. This review first surveys measurements that highlight these differences in terms of the sarcomere structure, passive and active tension generation, and calcium dependence. We then highlight the main practical challenges and caveats faced by experimentalists seeking to emulate the physiological conditions of intact muscle. Gaining an awareness of these complexities is essential for putting experiments in due perspective.more » « less
An official website of the United States government
