skip to main content

Search for: All records

Creators/Authors contains: "Miller, Arthur J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. In this work, we integrated the WAVEWATCH III model into the regional coupled model SKRIPS (Scripps–KAUST Regional Integrated Prediction System). The WAVEWATCH III model is implemented with flexibility, meaning the coupled system can run with or without the wave component. In our implementations, we considered the effect of Stokes drift, Langmuir turbulence, sea surface roughness, and wave-induced momentum fluxes. To demonstrate the impact of coupling we performed a case study using a series of coupled and uncoupled simulations of Tropical Cyclone Mekunu, which occurred in the Arabian Sea in May 2018. We examined the model skill in these simulations and further investigated the impact of Langmuir turbulence in the coupled system. Because of the chaotic nature of the atmosphere, we ran an ensemble of 20 members for each coupled and uncoupled experiment. We found that the characteristics of the tropical cyclone are not significantly different due to the effect of surface waves when using different parameterizations, but the coupled models better capture the minimum pressure and maximum wind speed compared with the benchmark stand-alone Weather Research and Forecasting (WRF) model. Moreover, in the region of the cold wake, when Langmuir turbulence is considered in the coupled system, the sea surface temperature is about 0.5 ∘C colder, and the mixed layer is about 20 m deeper. This indicates the ocean model is sensitive to the parameterization of Langmuir turbulence in the coupled simulations. 
    more » « less
  2. Abstract The South Atlantic Convergence Zone (SACZ) is an atmospheric system occurring in austral summer on the South America continent and sometimes extending over the adjacent South Atlantic. It is characterized by a persistent and very large, northwest-southeast-oriented, cloud band. Its presence over the ocean causes sea surface cooling that some past studies indicated as being produced by a decrease of incoming solar heat flux induced by the extensive cloud cover. Here we investigate ocean–atmosphere interaction processes in the Southwestern Atlantic Ocean (SWA) during SACZ oceanic episodes, as well as the resulting modulations occurring in the oceanic mixed layer and their possible feedbacks on the marine atmospheric boundary layer. Our main interests and novel results are on verifying how the oceanic SACZ acts on dynamic and thermodynamic mechanisms and contributes to the sea surface thermal balance in that region. In our oceanic SACZ episodes simulations we confirm an ocean surface cooling. Model results indicate that surface atmospheric circulation and the presence of an extensive cloud cover band over the SWA promote sea surface cooling via a combined effect of dynamic and thermodynamic mechanisms, which are of the same order of magnitude. The sea surface temperature (SST) decreases in regions underneath oceanic SACZ positions, near Southeast Brazilian coast, in the South Brazil Bight (SBB) and offshore. This cooling is the result of a complex combination of factors caused by the decrease of solar shortwave radiation reaching the sea surface and the reduction of horizontal heat advection in the Brazil Current (BC) region. The weakened southward BC and adjacent offshore region heat advection seems to be associated with the surface atmospheric circulation caused by oceanic SACZ episodes, which rotate the surface wind and strengthen cyclonic oceanic mesoscale eddy. Another singular feature found in this study is the presence of an atmospheric cyclonic vortex Southwest of the SACZ (CVSS), both at the surface and aloft at 850 hPa near 24°S and 45°W. The CVSS induces an SST decrease southwestward from the SACZ position by inducing divergent Ekman transport and consequent offshore upwelling. This shows that the dynamical effects of atmospheric surface circulation associated with the oceanic SACZ are not restricted only to the region underneath the cloud band, but that they extend southwestward where the CVSS presence supports the oceanic SACZ convective activity and concomitantly modifies the ocean dynamics. Therefore, the changes produced in the oceanic dynamics by these SACZ events may be important to many areas of scientific and applied climate research. For example, episodes of oceanic SACZ may influence the pathways of pollutants as well as fish larvae dispersion in the region. 
    more » « less
  3. abstract

    The marine coastal region makes up just 10% of the total area of the global ocean but contributes nearly 20% of its total primary production and over 80% of fisheries landings. Unicellular phytoplankton dominate primary production. Climate variability has had impacts on various marine ecosystems, but most sites are just approaching the age at which ecological responses to longer term, unidirectional climate trends might be distinguished. All five marine pelagic sites in the US Long Term Ecological Research (LTER) network are experiencing warming trends in surface air temperature. The marine physical system is responding at all sites with increasing mixed layer temperatures and decreasing depth and with declining sea ice cover at the two polar sites. Their ecological responses are more varied. Some sites show multiple population or ecosystem changes, whereas, at others, changes have not been detected, either because more time is needed or because they are not being measured.

    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    Abstract Investigating Pacific Meridional Modes (PMM) without the influence of tropical Pacific variability is technically difficult if based on observations or fully coupled model simulations due to their overlapping spatial structures. To confront this issue, the present study investigates both North (NPMM) and South PMM (SPMM) in terms of their associated atmospheric forcing and response processes based on a mechanically decoupled climate model simulation. In this experiment, the climatological wind stress is prescribed over the tropical Pacific, which effectively removes dynamically coupled tropical Pacific variability (e.g., the El Niño-Southern Oscillation). Interannual NPMM in this experiment is forced not only by the North Pacific Oscillation, but also by a North Pacific tripole (NPT) pattern of atmospheric internal variability, which primarily forces decadal NPMM variability. Interannual and decadal variability of the SPMM is partly forced by the South Pacific Oscillation. In turn, both interannual and decadal NPMM variability can excite atmospheric teleconnections over the Northern Hemisphere extratropics by influencing the meridional displacement of the climatological intertropical convergence zone throughout the whole year. Similarly, both interannual and decadal SPMM variability can also excite atmospheric teleconnections over the Southern Hemisphere extratropics by extending/shrinking the climatological South Pacific convergence zone in all seasons. Our results highlight a new poleward pathway by which both the NPMM and SPMM feed back to the extratropical climate, in addition to the equatorward influence on tropical Pacific variability. 
    more » « less