Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2023
-
Abstract Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO 2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO 2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO 2 later in the season.Free, publicly-accessible full text available December 1, 2023
-
Beavers have established themselves as a key component of low arctic ecosystems over the past several decades. Beavers are widely recognized as ecosystem engineers, but their effects on permafrost-dominated landscapes in the Arctic remain unclear. In this study, we document the occurrence, reconstruct the timing, and highlight the effects of beaver activity on a small creek valley confined by ice-rich permafrost on the Seward Peninsula, Alaska using multi-dimensional remote sensing analysis of satellite (Landsat-8, Sentinel-2, Planet CubeSat, and DigitalGlobe Inc./MAXAR) and unmanned aircraft systems (UAS) imagery. Beaver activity along the study reach of Swan Lake Creek appeared between 2006 and 2011 with the construction of three dams. Between 2011 and 2017, beaver dam numbers increased, with the peak occurring in 2017 (n = 9). Between 2017 and 2019, the number of dams decreased (n = 6), while the average length of the dams increased from 20 to 33 m. Between 4 and 20 August 2019, following a nine-day period of record rainfall (>125 mm), the well-established dam system failed, triggering the formation of a beaver-induced permafrost degradation feature. During the decade of beaver occupation between 2011 and 2021, the creek valley widened from 33 to 180 m (~450% increase) andmore »
-
Free, publicly-accessible full text available January 17, 2024
-
Abstract. Thaw and release of permafrost carbon (C) due to climate change is likely tooffset increased vegetation C uptake in northern high-latitude (NHL)terrestrial ecosystems. Models project that this permafrost C feedback mayact as a slow leak, in which case detection and attribution of the feedbackmay be difficult. The formation of talik, a subsurface layer of perenniallythawed soil, can accelerate permafrost degradation and soil respiration,ultimately shifting the C balance of permafrost-affected ecosystems fromlong-term C sinks to long-term C sources. It is imperative to understand andcharacterize mechanistic links between talik, permafrost thaw, andrespiration of deep soil C to detect and quantify the permafrost C feedback.Here, we use the Community Land Model (CLM) version 4.5, a permafrost andbiogeochemistry model, in comparison to long-term deep borehole data alongNorth American and Siberian transects, to investigate thaw-driven C sourcesin NHL (>55∘N) from 2000 to 2300. Widespread talik at depth isprojected across most of the NHL permafrost region(14million km2) by 2300, 6.2million km2 of which isprojected to become a long-term C source, emitting 10Pg C by 2100,50Pg C by 2200, and 120Pg C by 2300, with few signs ofslowing. Roughly half of the projected C source region is in predominantlywarm sub-Arctic permafrost following talik onset. This region emits only20Pg C by 2300, butmore »