Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Graf, Joerg (Ed.)ABSTRACT Fungal pathogens, among other stressors, negatively impact the productivity and population size of honey bees, one of our most important pollinators (1, 2), in particular their brood (larvae and pupae) (3, 4). Understanding the factors that influence disease incidence and prevalence in brood may help us improve colony health and productivity. Here, we examined the capacity of a honey bee-associated bacterium, Bombella apis , to suppress the growth of fungal pathogens and ultimately protect bee brood from infection. Our results showed that strains of B. apis inhibit the growth of two insect fungal pathogens, Beauveria bassiana and Aspergillus flavus , in vitro . This phenotype was recapitulated in vivo ; bee broods supplemented with B. apis were significantly less likely to be infected by A. flavus . Additionally, the presence of B. apis reduced sporulation of A. flavus in the few bees that were infected. Analyses of biosynthetic gene clusters across B. apis strains suggest antifungal candidates, including a type 1 polyketide, terpene, and aryl polyene. Secreted metabolites from B. apis alone were sufficient to suppress fungal growth, supporting the hypothesis that fungal inhibition is mediated by an antifungal metabolite. Together, these data suggest that B. apis can suppress fungal infections in bee brood via secretion of an antifungal metabolite. IMPORTANCE Fungi can play critical roles in host microbiomes (5–7), yet bacterial-fungal interactions are understudied. For insects, fungi are the leading cause of disease (5, 8). In particular, populations of the European honey bee ( Apis mellifera ), an agriculturally and economically critical species, have declined in part due to fungal pathogens. The presence and prevalence of fungal pathogens in honey bees have far-reaching consequences, endangering other species and threatening food security (1, 2, 9). Our research highlights how a bacterial symbiont protects bee brood from fungal infection. Further mechanistic work could lead to the development of new antifungal treatments.more » « less
-
Dunning Hotopp, Julie C. (Ed.)ABSTRACT The genus Saccharibacter is currently understudied, with only one described species, Saccharibacter floricola , isolated from a flower. In an effort to better understand the microbes that come in contact with native bee pollinators, we isolated and sequenced four additional strains of Saccharibacter from native bees in the genera Melissodes and Anthophora . These genomes range in size from 2,104,494 to 2,316,791 bp (mean, 2,246,664 bp) and contain between 1,860 and 2,167 (mean, 2,060) protein-coding genes.more » « less
-
Dunning Hotopp, Julie C. (Ed.)ABSTRACT Bombella apis occupies a variety of distinct niches within a honey bee hive, including queen guts, royal jelly, and larval food. In an effort to better understand its evolution and identify signatures of honey bee association, we sequenced a strain isolated from hive honey stores. This genome is 2,086,308 bp long and contains 1,975 protein-coding genes.more » « less