Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 2, 2025
-
Data privacy, a critical human right, is gaining importance as new technologies are developed, and the old ones evolve. In mobile platforms such as Android, data privacy regulations require developers to communicate data access requests using privacy policy statements (PPS). This case study cross-examines the PPS in popular social media (SM) apps---Facebook and Twitter---for features of language ambiguity, sensitive data requests, and whether the statements tally with the data requests made in the Manifest file. Subsequently, we conduct a comparative analysis between the PPS of these two apps to examine trends that may constitute a threat to user data privacy.more » « less
-
As data privacy continues to be a crucial human-right concern as recognized by the UN, regulatory agencies have demanded developers obtain user permission before accessing user-sensitive data. Mainly through the use of privacy policies statements, developers fulfill their legal requirements to keep users abreast of the requests for their data. In addition, platforms such as Android enforces explicit permission request using the permission model. Nonetheless, recent research has shown that service providers hardly make full disclosure when requesting data in these statements. Neither is the current permission model designed to provide adequate informed consent. Often users have no clear understanding of the reason and scope of usage of the data request. This paper proposes an unambiguous, informed consent process that provides developers with a standardized method for declaring Intent. Our proposed Intent-aware permission architecture extends the current Android permission model with a precise mechanism for full disclosure of purpose and scope limitation. The design of which is based on an ontology study of data requests purposes. The overarching objective of this model is to ensure end-users are adequately informed before making decisions on their data. Additionally, this model has the potential to improve trust between end-users and developers.more » « less
-
A search for the nonresonant production of Higgs boson pairs in thechannel is performed usingof proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The analysis strategy is optimized to probe anomalous values of the Higgs boson self-coupling modifierand of the quartic() coupling modifier. No significant excess above the expected background from Standard Model processes is observed. An observed (expected) upper limitis set at 95% confidence-level on the Higgs boson pair production cross section normalized to its Standard Model prediction. The coupling modifiers are constrained to an observed (expected) 95% confidence interval of() and(), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The results are also interpreted in the context of effective field theories via constraints on anomalous Higgs boson couplings and Higgs boson pair production cross sections assuming different kinematic benchmark scenarios.
© 2024 CERN, for the ATLAS Collaboration 2024 CERN Free, publicly-accessible full text available August 1, 2025 -
Exploring the effects of solar eclipses on radio wave propagation has been an active area of research since the first experiments conducted in 1912. In the first few decades of ionospheric physics, researchers started to explore the natural laboratory of the upper atmosphere. Solar eclipses offered a rare opportunity to undertake an active experiment. The results stimulated much scientific discussion. Early users of radio noticed that propagation was different during night and day. A solar eclipse provided the opportunity to study this day/night effect with much sharper boundaries than at sunrise and sunset, when gradual changes occur along with temperature changes in the atmosphere and variations in the sun angle. Plots of amplitude time series were hypothesized to indicate the recombination rates and reionization rates of the ionosphere during and after the eclipse, though not all time-amplitude plots showed the same curve shapes. A few studies used multiple receivers paired with one transmitter for one eclipse, with a 5:1 ratio as the upper bound. In these cases, the signal amplitude plots generated for data received from the five receive sites for one transmitter varied greatly in shape. Examination of very earliest results shows the difficulty in using a solar eclipse to study propagation; different researchers used different frequencies from different locations at different times. Solar eclipses have been used to study propagation at a range of radio frequencies. For example, the first study in 1912 used a receiver tuned to 5,500 meters, roughly 54.545 kHz. We now have data from solar eclipses at frequencies ranging from VLF through HF, from many different sites with many different eclipse effects. This data has greatly contributed to our understanding of the ionosphere. The solar eclipse over the United States on August 21, 2017 presents an opportunity to have many locations receiving from the same transmitters. Experiments will target VLF, LF, and HF using VLF/LF transmitters, NIST’s WWVB time station at 60 kHz, and hams using their HF frequency allocations. This effort involves Citizen Science, wideband software defined radios, and the use of the Reverse Beacon Network and WSPRnet to collect eclipse-related data.more » « less