Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Archival systems are often tasked with storing highly valuable data that may be targeted by malicious actors. When the lifetime of the secret data is on the order of decades to centuries, the threat of improved cryptanalysis casts doubt on the long-term security of cryptographic techniques, which rely on hardness assumptions that are hard to prove over archival time scales. This threat makes the design of secure archival systems exceptionally difficult. Some archival systems turn a blind eye to this issue, hoping that current cryptographic techniques will not be broken; others often use techniques--—such as secret sharing—that are impractical at scale. This position paper sheds light on the core challenges behind building practically viable secure long-term archives; we identify promising research avenues towards this goal.more » « lessFree, publicly-accessible full text available July 8, 2025
-
Important applications of photon upconversion through triplet–triplet annihilation require conversion of near-IR photons to visible light. Generally, however, efficiencies in this spectral region lag behind bluer analogues. Herein we consider potential benefits from a conformationally well-defined covalent dimer annihilator TIPS-BTX in studies that systematically compare function to a related monomer model TIPStetracene (TIPS-Tc). TIPS-BTX exhibits weak electronic coupling between chromophores juxtaposed about a polycyclic bridge. We report an upconversion yield fUC for TIPS-BTX that is more than 20× larger than TIPS-Tc under comparable conditions (0.16%). While the dimer fUC is low compared to bluer champion systems, this yield is amongst the largest so-far reported for a tetracenic dimer system and is achieved under unoptimized conditions suggesting a significantly higher ceiling. Further investigation shows the fUC enhancement for the dimer is due exclusively to the TTA process with an effective yield more that 30× larger for TIPS-BTX compared to TIPS-Tc. The fTTA enhancement for TIPS-BTX relative to TIPS-Tc is indicative of participation by intramolecular multiexciton states with evidence presented in spin statistical arguments that the 5TT is involved in productive channels. For TIPS-BTX we report a spin statistical factor f = 0.42 that matches or exceeds values found in champion annihilator systems such as DPA. At the same time, the poor relative efficiency of TIPS-Tc suggests involvement of non-productive bimolecular channels and excimeric states are suspected. Broadly these studies indicate that funneling of photogenerated electronic states into productive pathways, and avoiding parasitic ones, remains central to the development of champion upconversion systems.more » « less
-
Effectively exploiting emerging far-memory technology requires consideration of operating on richly connected data outside the context of the parent process. Operating-system technology in development offers help by exposing abstractions such as memory objects and globally invariant pointers that can be traversed by devices and newly instantiated compute. Such ideas will allow applications running on future heterogeneous distributed systems with disaggregated memory nodes to exploit near-memory processing for higher performance and to independently scale their memory and compute resources for lower cost.
-
Modern data privacy regulations such as GDPR, CCPA, and CDPA stipulate that data pertaining to a user must be deleted without undue delay upon the user’s request. Existing systems are not designed to comply with these regulations and can leave traces of deleted data for indeterminate periods of time, often as long as months. We developed Lethe to address these problems by providing fine-grained secure deletion on any system and any storage medium, provided that Lethe has access to a fixed, small amount of securely-deletable storage. Lethe achieves this using keyed hash forests (KHFs), extensions of keyed hash trees (KHTs), structured to serve as efficient representations of encryption key hierarchies. By using a KHF as a regulator for data access, Lethe provides its secure deletion not by removing the KHF, but by adding a new KHF that only grants access to still-valid data. Access to the previous KHF is lost, and the data it regulated securely deleted, through the secure deletion of the single key that protected the previous KHF.more » « less
-
Modern data privacy regulations such as GDPR, CCPA, and CDPA stipulate that data pertaining to a user must be deleted without undue delay upon the user’s request. Existing sys- tems are not designed to comply with these regulations and can leave traces of deleted data for indeterminate periods of time, often as long as months. We developed Lethe to address these problems by pro- viding fine-grained secure deletion on any system and any storage medium, provided that Lethe has access to a fixed, small amount of securely-deletable storage. Lethe achieves this using keyed hash forests (KHFs), extensions of keyed hash trees (KHTs), structured to serve as efficient representations of encryption key hierarchies. By using a KHF as a regulator for data access, Lethe provides its secure deletion not by re- moving the KHF, but by adding a new KHF that only grants access to still-valid data. Access to the previous KHF is lost, and the data it regulated securely deleted, through the secure deletion of the single key that protected the previous KHF.more » « less
-
Aim: With the widespread adoption of disk encryption technologies, it has become common for adversaries to employ coercive tactics to force users to surrender encryption keys. For some users, this creates a need for hidden volumes that provide plausible deniability, the ability to deny the existence of sensitive information. Previous deniable storage solutions only offer pieces of an implementable solution that do not take into account more advanced adversaries, such as intelligence agencies, and operational concerns. Specifically, they do not address an adversary that is familiar with the design characteristics of any deniable system. Methods: We evaluated existing threat models and deniable storage system designs to produce a new, stronger threat model and identified design characteristics necessary in a plausibly deniable storage system. To better explore the implications of this stronger adversary, we developed Artifice, the first tunable, operationally secure, self repairing, and fully deniable storage system. Results: With Artifice, hidden data blocks are split with an information dispersal algorithm such as Shamir Secret Sharing to produce a set of obfuscated carrier blocks that are indistinguishable from other pseudorandom blocks on the disk. The blocks are then stored in unallocated space of an existing file system. The erasure correcting capabilities of an information dispersal algorithm allow Artifice to self repair damage caused by writes to the public file system. Unlike preceding systems, Artifice addresses problems regarding flash storage devices and multiple snapshot attacks through simple block allocation schemes and operational security measures. To hide the user’s ability to run a deniable system and prevent information leakage, a user accesses Artifice through a separate OS stored on an external Linux live disk. Conclusion: In this paper, we present a stronger adversary model and show that our proposed design addresses the primary weaknesses of existing approaches to deniable storage under this stronger assumed adversary.more » « less
-
The objective of the Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS) project is to develop a distributed array of ground-based multi-instrument nodes capable of remote sensing the geospace system. This system is being designed with the intention of distribution to a large number of amateur radio and citizen science observers. This will create an unprecedented opportunity to probe the ionosphere at finer resolution in both time and space as all measurements will be collected into a central database for coordinated analysis. Individual nodes are being designed to service the needs of the professional space science researcher while being cost-accessible and of interest to amateur radio operators and citizen scientists. At the heart of the HamSCI PSWS will be a high performance 0.1–60 MHz software defined radio (SDR) [1] with GNSS-based precision timestamping and frequency reference. This SDR is known as the TangerineSDR and is being developed by the Tucson Amateur Packet Radio (TAPR) amateur radio organization. The primary objective of PSWS system is to gather observations to understand the short term and small spatial scale ionospheric variabilities in the ionosphere-thermosphere system. These variabilities are important for understanding a variety of geophysical phenomena such as Traveling Ionospheric Disturbances (TIDs) [2], Ionospheric absorption events, geomagnetic storms and substorms. We present early results suggesting signature of Traveling Ionospheric Disturbances (TIDs) from an ionospheric sounding mode that we intend to implement on the PSWS system, currently implemented on an Ettus N200 Universal Software Radio Peripheral (USRP) using the open source GNU Chirpsounder data collection and analysis code.more » « less