skip to main content

Search for: All records

Creators/Authors contains: "Miller, Jared"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2023
  2. Peak estimation bounds extreme values of a function of state along trajectories of a dynamical system. This paper focuses on extending peak estimation to continuous and discrete settings with time-independent and time-dependent uncertainty. Techniques from optimal control are used to incorporate uncertainty into an existing occupation measure-based peak estimation framework, which includes special consideration for handling switching-type (polytopic) uncertainties. The resulting infinite-dimensional linear programs can be solved approximately with Linear Matrix Inequalities arising from the moment-SOS hierarchy.
  3. Semidefinite programs (SDPs) often arise in relaxations of some NP-hard problems, and if the solution of the SDP obeys certain rank constraints, the relaxation will be tight. Decomposition methods based on chordal sparsity have already been applied to speed up the solution of sparse SDPs, but methods for dealing with rank constraints are underdeveloped. This paper leverages a minimum rank completion result to decompose the rank constraint on a single large matrix into multiple rank constraints on a set of smaller matrices. The re-weighted heuristic is used as a proxy for rank, and the specific form of the heuristic preserves the sparsity pattern between iterations. Implementations of rank-minimized SDPs through interior-point and first-order algorithms are discussed. The problem of subspace clustering is used to demonstrate the computational improvement of the proposed method.