Conflict between livestock producers and wild predators is a central driver of large predator declines and simultaneously may imperil the lives and livelihoods of livestock producers. There is a growing recognition that livestock–predator conflict is a socio‐ecological problem, but few case studies exist to guide conflict research and management from this point of view. Here we present a case study of coyote‐sheep predation on a California ranch in which we combine methods from the rapidly growing field of predation risk modeling with participatory mapping of perceptions of predation risk. Our findings reveal an important selection bias that may occur when producer perceptions and decisions are excluded from ecological methods of studying conflict. We further demonstrate how producer inputs, participatory mapping, and ecological modeling of conflict can inform one another in understanding patterns, drivers, and management opportunities for livestock–predator conflict. Finally, we make recommendations for improving the interoperability of ecological and social data about predation risk. Collectively our methods offer a socio‐ecological approach that fills important research gaps and offers guidance to future research.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Protected areas (PAs) play an important role in conserving biodiversity and providing ecosystem services, yet their effectiveness is undermined by funding shortfalls. Using lions (
Panthera leo ) as a proxy for PA health, we assessed available funding relative to budget requirements for PAs in Africa’s savannahs. We compiled a dataset of 2015 funding for 282 state-owned PAs with lions. We applied three methods to estimate the minimum funding required for effective conservation of lions, and calculated deficits. We estimated minimum required funding as $978/km2per year based on the cost of effectively managing lions in nine reserves by the African Parks Network; $1,271/km2based on modeled costs of managing lions at ≥50% carrying capacity across diverse conditions in 115 PAs; and $2,030/km2based on Packer et al.’s [Packer et al. (2013)Ecol Lett 16:635–641] cost of managing lions in 22 unfenced PAs. PAs with lions require a total of $1.2 to $2.4 billion annually, or ∼$1,000 to 2,000/km2, yet received only $381 million annually, or a median of $200/km2. Ninety-six percent of range countries had funding deficits in at least one PA, with 88 to 94% of PAs with lions funded insufficiently. In funding-deficit PAs, available funding satisfied just 10 to 20% of PA requirements on average, and deficits total $0.9 to $2.1 billion. African governments and the international community need to increase the funding available for management by three to six times if PAs are to effectively conserve lions and other species and provide vital ecological and economic benefits to neighboring communities. -
Abstract Carnivore predation on livestock is a complex management and policy challenge, yet it is also intrinsically an ecological interaction between predators and prey. Human–wildlife interactions occur in socioecological systems in which human and environmental processes are closely linked. However, underlying human–wildlife conflict and key to unpacking its complexity are concrete and identifiable ecological mechanisms that lead to predation events. To better understand how ecological theory accords with interactions between wild predators and domestic prey, we developed a framework to describe ecological drivers of predation on livestock. We based this framework on foundational ecological theory and current research on interactions between predators and domestic prey. We used this framework to examine ecological mechanisms (e.g., density‐mediated effects, behaviorally mediated effects, and optimal foraging theory) through which specific management interventions operate, and we analyzed the ecological determinants of failure and success of management interventions in 3 case studies: snow leopards (
Panthera uncia ), wolves (Canis lupus ), and cougars (Puma concolor ). The varied, context‐dependent successes and failures of the management interventions in these case studies demonstrated the utility of using an ecological framework to ground research and management of carnivore–livestock conflict. Mitigation of human–wildlife conflict appears to require an understanding of how fundamental ecological theories work within domestic predator–prey systems.