skip to main content


Search for: All records

Creators/Authors contains: "Miller, Perry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Increasing climate aridity and drought, exacerbated by global warming, are increasing risks for western United States of America (U.S.A.) rainfed farming, and challenging producers’ capacity to maintain production and profitability. With agricultural water demand in the region exceeding limited supplies and fewer opportunities to develop new water sources, rainfed agriculture is under increasing pressure to meet the nation’s growing food demands. This study examines three major western U.S.A. rainfed crops: barley, spring wheat, and winter wheat. We analyzed the relationship between crop repurposing (the ratio of acres harvested for grain to the total planted acres) to seasonal climatic water deficit (CWD). To isolate the climate signal from economic factors, our analysis accounted for the influence of crop prices on grain harvest. We used historical climate and agricultural data between 1958 and 2020 to model crop repurposing (e.g. forage) across the observed CWD record using a fixed effect model. Our methodology is applicable for any region and incorporates regional differences in farming and economic drivers. Our results indicate that farmers are less likely to harvest barley and spring wheat for grain when the spring CWD is above average. Of the major winter wheat growing regions, only the Northern High Plains in Texas showed a trend of decreasing grain harvest during high CWD. For the majority of major crop growing regions, grain prices increased with lower levels of grain harvest. Interestingly, winter wheat repurposing is significantly higher in the southern Great Plains (∼50% harvested for grain) compared to the rest of the West (∼90%). Our results highlight that the major barley and spring wheat regions’ grain harvests are vulnerable to high spring CWD and low summer CWD, while winter wheat grain harvest is unaffected by variable CWD in most of the West.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    The need for sustainable agricultural practices to meet the food, feed, and fuel demands of a growing global population while reducing detrimental environmental impacts has driven research in multi‐faceted approaches to agricultural sustainability. Perennial cropping systems and microbial biofertilizer supplements are two emerging strategies to increase agricultural sustainability that are studied in tandem for the first time in this study. During the establishment phase of a perennial switchgrass stand in SW Montana, USA, we supplemented synthetic fertilization with a nitrogen‐fixing cyanobacterial biofertilizer (CBF) and were able to maintain aboveground crop productivity in comparison to a synthetic only (urea) fertilizer treatment. Soil chemical analysis conducted at the end of the growing season revealed that late‐season nitrogen availability in CBF‐supplemented field plots increased relative to urea‐only plots. High‐throughput sequencing of bacterial/archaeal and fungal communities suggested fine‐scale responses of the microbial community and sensitivity to fertilization among arbuscular mycorrhizal fungi, Planctomycetes, Proteobacteria, and Actinobacteria. Given their critical role in plant productivity and soil nutrient cycling, soil microbiome monitoring is vital to understand the impacts of implementation of alternative agricultural practices on soil health.

     
    more » « less