skip to main content

Search for: All records

Creators/Authors contains: "Miller, Scott N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this study, we characterize the snowmelt hydrological response of nine headwater watersheds in southeast Wyoming by separating streamflow into three components using a combination of tracer and graphical approaches. First, continuous 15‐min records of specific conductance (SC) from 2016 to 2018 were used to separate streamflow into annual contributions, representing water that contributes to streamflow in a given year that entered the watershed in the same year being considered, and perennial contributions, representing water that contributes to streamflow in a given year that entered the watershed in previous years. Then, diurnal streamflow cycles occurring during the snowmelt season were used to graphically separate annual contributions into rapid diurnal snowmelt contributions, representing water with the relatively fastest hydrological response and shortest residence time, and delayed annual contributions, representing water with relatively longer residence time in the watershed before becoming streamflow. On average, mean annual total streamflow was comprised of between 22% and 46% perennial contributions, 7% and 14% rapid diurnal snowmelt contributions, and 46% and 55% delayed annual contributions across the watersheds. A hysteresis index describing SC‐discharge patterns indicated that, annually, most watersheds showed negative, concave, anti‐clockwise hysteretic direction suggesting faster flow pathways dominate streamflow on the rising limb of the annual hydrograph relative to the falling limb. At the daily timescale during snowmelt‐induced diurnal streamflow cycles, hysteresis was negative, but with a clockwise direction, implying that rapid diurnal snowmelt contributions generated from the concurrent daily snowmelt, with lower SC, arrived after delayed annual contribution peaks and preferentially contributed on the falling limb of diurnal cycles. South‐facing watersheds were more susceptible to early season snowmelt at slower rates, resulting in less annual and more perennial contributions. Conversely, north‐facing watersheds had longer snow persistence and larger proportions of annual contributions and rapid diurnal snowmelt contributions. Watersheds with surficial geology dominated by glacial deposits had a lower proportion of rapid diurnal snowmelt contributions compared to watersheds with large percentages of bedrock surficial geology.

    more » « less
  2. Abstract

    The complex ecohydrological processes of rangelands can be studied through the framework of ecological sites (ESs) or hillslope‐scale soil–vegetation complexes. High‐quality hydrologic field investigations are needed to quantitatively link ES characteristics to hydrologic function. Geophysical tools are useful in this context because they provide valuable information about the subsurface at appropriate spatial scales. We conducted 20 field experiments in which we deployed time‐lapse electrical resistivity tomography (ERT), variable intensity rainfall simulation, ground‐penetrating radar (GPR), and seismic refraction, on hillslope plots at five different ESs within the Upper Crow Creek Watershed in south‐east Wyoming. Surface runoff was measured using a precalibrated flume. Infiltration data from the rainfall simulations, coupled with site‐specific resistivity–water content relationships and ERT datasets, were used to spatially and temporally track the progression of the wetting front. First‐order constraints on subsurface structure were made at each ES using the geophysical methods. Sites ranged from infiltrating 100% of applied rainfall to infiltrating less than 60%. Analysis of covariance results indicated significant differences in the rate of wetting front progression, ranging from 0.346 m min−1/2for sites with a subsurface dominated by saprolitic material to 0.156 m min−1/2for sites with a well‐developed soil profile. There was broad agreement in subsurface structure between the geophysical methods with GPR typically providing the most detail. Joint interpretation of the geophysics showed that subsurface features such as soil layer thickness and the location of subsurface obstructions such as granite corestones and material boundaries had a large effect on the rate of infiltration and subsurface flow processes. These features identified through the geophysics varied significantly by ES. By linking surface hydrologic information from the rainfall simulations with subsurface information provided by the geophysics, we can characterize the ES‐specific hydrologic response. Both surface and subsurface flow processes differed among sites and are directly linked to measured characteristics.

    more » « less