skip to main content

Search for: All records

Creators/Authors contains: "Mimura, Takanori"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Materials with tunable thermal properties enable on-demand control of temperature and heat flow, which is an integral component in the development of solid-state refrigeration, energy scavenging, and thermal circuits. Although gap-based and liquid-based thermal switches that work on the basis of mechanical movements have been an effective approach to control the flow of heat in the devices, their complex mechanisms impose considerable costs in latency, expense, and power consumption. As a consequence, materials that have multiple solid-state phases with distinct thermal properties are appealing for thermal management due to their simplicity, fast switching, and compactness. Thus, an ideal thermal switch should operate near or above room temperature, have a simple trigger mechanism, and offer a quick and large on/off switching ratio. In this study, we experimentally demonstrate that manipulating phonon scattering rates can switch the thermal conductivity of antiferroelectric PbZrO 3 bidirectionally by −10% and +25% upon applying electrical and thermal excitation, respectively. Our approach takes advantage of two separate phase transformations in PbZrO 3 that alter the phonon scattering rate in different manners. In this study, we demonstrate that PbZrO 3 can serve as a fast (<1 second), repeatable, simple trigger, and reliable thermal switch with a net switchingmore »ratio of nearly 38% from ~1.20 to ~1.65 W m −1 K −1 .« less
    Free, publicly-accessible full text available December 1, 2023
  2. Abstract

    The presence of the top electrode on hafnium oxide‐based thin films during processing has been shown to drive an increase in the amount of metastable ferroelectric orthorhombic phase and polarization performance. This “Clamping Effect,” also referred to as the Capping or Confinement Effect, is attributed to the mechanical stress and confinement from the top electrode layer. However, other contributions to orthorhombic phase stabilization have been experimentally reported, which may also be affected by the presence of a top electrode. In this study, it is shown that the presence of the top electrode during thermal processing results in larger tensile biaxial stress magnitudes and concomitant increases in ferroelectric phase fraction and polarization response, whereas film chemistry, microstructure, and crystallization temperature are not affected. Through etching experiments and measurement of stress evolution for each processing step, it is shown that the top electrode locally inhibits out‐of‐plane expansion in the HZO during crystallization, which prevents equilibrium monoclinic phase formation and stabilizes the orthorhombic phase. This study provides a mechanistic understanding of the clamping effect and orthorhombic phase formation in ferroelectric hafnium oxide‐based thin films, which informs the future design of these materials to maximize ferroelectric phase purity and corresponding polarization behavior.

  3. Abstract

    One of the general features of ferroelectric systems is a complex nature of polarization reversal, which involves domain nucleation and motion of domain walls. Here, time‐resolved nanoscale domain imaging is applied in conjunction with the integral switching current measurements to investigate the mechanism of polarization reversal in yttrium‐doped HfO2(Y:HfO2)—currently one of the most actively studied ferroelectric systems. More specifically, the effect of film microstructure on the nucleation process is investigated by performing a comparative study of the polarization switching behavior in the epitaxial and polycrystalline Y:HfO2thin film capacitors. It is found that although the epitaxial Y:HfO2capacitors tend to switch slower than their polycrystalline counterparts, they exhibit a significantly higher nucleation density and rate, suggesting that this is a rate‐limiting mechanism. In addition, it is observed that under the external fields approaching the activation field value, the switching kinetics can be described equally well by the nucleation limited switching and the Kolmogorov‐Avrami‐Ishibashi models for both types of capacitors. This signifies convergence of two different mechanisms implying that the polarization reversal proceeds via a homogeneous nucleation process unaffected by the film microstructure, which can be considered as approaching the intrinsic switching limit.