- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Chen (1)
-
He, Yinhan (1)
-
Li, Jundong (1)
-
Min, Guanghui (1)
-
Wang, Song (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Epidemic containment has long been a crucial task in many high-stake application domains, ranging from public health to misinformation dissemination. Existing studies for epidemic containment are primarily focused on undirected networks, assuming that the infection rate is constant throughout the contact network regardless of the strength and direction of contact. However, such an assumption can be unrealistic given the asymmetric nature of the real-world infection process. To tackle the epidemic containment problem in directed networks, simply grafting the methods designed for undirected network can be problematic, as most of the existing methods rely on the orthogonality and Lipschitz continuity in the eigensystem of the underlying contact network, which do not hold for directed networks. In this work, we derive a theoretical analysis on the general epidemic threshold condition for directed networks and show that such threshold condition can be used as an optimization objective to control the spread of the disease. Based on the epidemic threshold, we propose an asymptotically greedy algorithm DINO (DIrected NetwOrk epidemic containment) to identify the most critical nodes for epidemic containment. The proposed algorithm is evaluated on real-world directed networks, and the results validate its effectiveness and efficiency.more » « lessFree, publicly-accessible full text available March 10, 2026
An official website of the United States government
