Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract: We investigate dynamic network resource allocation using software-defined networking optical controller with software-defined radios on the COSMOS testbed. 10 Gb/s capacity, deterministic low latency are maintained through user equipment wireless handover via optical switching.more » « less
-
We investigate dynamic network resource allocation using software-defined networking optical controller with software-defined radios on the COSMOS testbed. 10 Gb/s capacity, deterministic low latency are maintained through user equipment wireless handover via optical switching. © 2020 The Author(s) OCIS codes: 060.4256, 060.0060.more » « less
-
The Cloud-Enhanced Open Software Defined Mobile Wireless Testbed for City-Scale Deployment (COSMOS) platform is a programmable city-scale shared multi-user advanced wireless testbed that is being deployed in West Harlem of New York City [1]. To keep pace with the significantly increased wireless link bandwidth and to effectively integrate the emerging C-RANs, COSMOS is designed to incorporate a fast programmable core network for providing connections across different computing layers. A key feature of COSMOS is its dark fiber based optical x-haul network that enables both highly flexible, user defined network topologies and experimentation directly in the optical physical layer. The optical architecture of COSMOS was presented in [2]. In this abstract, we present the tools and services designed to configure and monitor the performance of optical paths and topologies of the COSMOS testbed. In particular, we present the SDN framework that allows testbed users to implement experiments with application-driven control of optical and data networking functionalities.more » « less
-
ABSTRACT The Cloud Enhanced Open Software Defined Mobile Wireless Testbed for City-Scale Deployment (COSMOS) platform is a programmable city-scale shared multiuser advanced wireless testbed that is being deployed in New York City [1]. Open APIs and programmability across all the technology components and protocol layers in COSMOS will enable researchers to explore 5G technologies in a real world environment. A key feature of COSMOS is its dark fiber based optical x-haul network that enables both highly flexible, user defined network topologies as well as experimentation directly in the optical physical layer. A paper on the COSMOS optical architecture was previously presented in [2]. In this talk, we briefly introduce COSMOS’ optical x-haul network with SDN control, and its integration with the software-defined radio (SDR) and mobile edge cloud.more » « less
-
Abstract—The Cloud-Enhanced Open Software Defined Mobile Wireless Testbed for City-Scale Deployment (COSMOS) platform is a programmable city-scale shared multi-user advanced wireless testbed that is being deployed in West Harlem of New York City [1]. To keep pace with the significantly increased wireless link bandwidth and to effectively integrate the emerging C-RANs, COSMOS is designed to incorporate a fast programmable core network for providing connections across different computing layers. A key feature of COSMOS is its dark fiber based optical x-haul network that enables both highly flexible, user defined network topologies and experimentation directly in the optical physical layer. The optical architecture of COSMOS was presented in [2]. In this abstract, we present the tools and services designed to configure and monitor the performance of optical paths and topologies of the COSMOS testbed. In particular, we present the SDN framework that allows testbed users to implement experiments with application-driven control of optical and data networking functionalities.more » « less