skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Minder, Justin R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Investigations into the melting layer (ML) of winter storms have revealed small-scale fluctuations in the horizontal wind that could significantly affect the surface precipitation type (p-type) and the evolution of the ML. Despite previous evidence of such fluctuations, essential questions remain concerning their characteristics and the forces driving them. Therefore, this study characterizes small-scale horizontal wind fluctuations (<1 km in length with perturbation magnitudes < 3 m s−1) and their environments within the ML of winter storms. This analysis uses data from a scanning X-band Doppler radar collected during the Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX), conducted during February and March 2022. We present three case studies where small-scale horizontal wind fluctuations are identified using along-radial and along-azimuthal radial velocity perturbations. These cases cover the range of environmental conditions observed during WINTRE-MIX, including (i) a descending ML with change in surface p-type from snow to rain, (ii) a steady ML with a surface p-type transition from freezing rain to rain due to surface cold air erosion, and (iii) a steady ML with a surface p-type transition from freezing rain to ice pellets due to surface cold air advection. Forcing mechanisms for small-scale wind fluctuations during each case are attributed to static instability, vertically trapped gravity waves, and/or shear instability inferred from rawinsonde data, HRRR analysis, and radar data. Our findings suggest that static instability, gravity waves, and shear instability drive the ML’s small-scale wind fluctuations and may influence surface precipitation-type transitions. Significance StatementThis research aims to enhance our understanding of horizontal motions (<1 km in length) within melting layers (MLs) of winter storms and their underlying causes. This study uses radar data to detect differences in horizontal motion within the ML of three different winter storms. Weather balloon observations and output from computer weather forecasts are then used to distinguish between horizontal motions generated by convection, vertically trapped gravity waves, or shear. Our findings reveal that horizontal motions within the ML are generated by different forcing mechanisms within different storms and that horizontal motions may influence the surface p-type. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract During near-0°C surface conditions, diverse precipitation types (p-types) are possible, including rain, drizzle, freezing rain, freezing drizzle, ice pellets, wet snow, snow, and snow pellets. Near-0°C precipitation affects wide swaths of the United States and Canada, impacting aviation, road transportation, power generation and distribution, winter recreation, ecology, and hydrology. Fundamental challenges remain in observing, diagnosing, simulating, and forecasting near-0°C p-types, particularly during transitions and within complex terrain. Motivated by these challenges, the field phase of the Winter Precipitation Type Research Multi-scale Experiment (WINTRE-MIX) was conducted from 1 February – 15 March 2022 to better understand how multiscale processes influence the variability and predictability of p-type and amount under near-0°C surface conditions. WINTRE-MIX took place near the US / Canadian border, in northern New York and southern Quebec, a region with plentiful near-0°C precipitation influenced by terrain. During WINTRE-MIX, existing advanced mesonets in New York and Quebec were complemented by deployment of: (1) surface instruments, (2) the National Research Council Convair-580 research aircraft with W- and X-band Doppler radars and in situ cloud and aerosol instrumentation, (3) two X-band dual-polarization Doppler radars and a C-band dual-polarization Doppler radar from University of Illinois, and (4) teams collecting manual hydrometeor observations and radiosonde measurements. Eleven intensive observing periods (IOPs) were coordinated. Analysis of these WINTRE-MIX IOPs is illuminating how synoptic dynamics, mesoscale dynamics, and microscale processes combine to determine p-type and its predictability under near-0°C conditions. WINTRE-MIX research will contribute to improving nowcasts and forecasts of near-0°C precipitation through evaluation and refinement of observational diagnostics and numerical forecast models. 
    more » « less
  3. Abstract The distribution and intensity of lake- and sea-effect (hereafter lake-effect) precipitation are strongly influenced by the mode of landfalling lake-effect systems. Here, we used idealized large-eddy simulations to investigate the downstream evolution and coastal-to-inland transition of two lake-effect modes: 1) a long-lake-axis-parallel (LLAP) band generated by an oval body of water (hereafter lake; e.g., Lake Ontario) and 2) broad-coverage, open-cell convection generated by an open lake (e.g., Sea of Japan). Under identical atmospheric conditions and lake-surface temperatures, the oval lake generates a LLAP band with heavy precipitation along the midlake axis, whereas the open lake generates broad-coverage, open-cell convection with widespread, light accumulations. Over the oval lake, the LLAP band features a thermally forced and diabatically enhanced cross-band secondary circulation with convergence and ascent over the midlake axis. Downstream of the lake, flanking airstreams that avoid lake modification merge beneath the band where they experience sublimational cooling, producing a cold pool. At the upstream edge of the cold pool, a coastal baroclinic zone forms. Above this zone, ascent and hydrometeor mass growth are maximized, resulting in an inland precipitation maximum due to subsequent hydrometeor transport and fallout. Over the open lake, individual open cells grow larger and stronger with overwater extent, but a convective-to-stratiform transition begins at the coast. Here, convective vigor decays, mesoscale ascent begins, and enhanced hydrometeor growth results in an inland precipitation maximum. These results highlight variations in the coastal-to-inland transition of lake-effect systems that ultimately influence the distribution and intensity of lake-effect precipitation. 
    more » « less