Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
According to the United States Bureau of Labor Statistics, union density amongst engineering workers within the US hovers around 7%. Despite hundreds of thousands of US engineers participating in the labor movement, engineering education on labor unions has been virtually non-existent within US higher education engineering programs. US higher education engineering programs are critical junctures in the making of engineers that have long histories of ensnarement by corporate industries with vested interests in undermining organized labor. This stark and significant absence of labor education coupled with decades-long denunciations that many engineering professional societies have made to discourage participation of engineers in building labor unions and the labor movement interrupt engineers’ capacity to collectively leverage our power for safer, healthier, and more just workplaces and worlds. An imperative task in the (re)development of the US engineering workforce is to build and strengthen union density amongst engineers by expanding unionization pathways. This paper offers a preliminary report back on a broader engineering workforce development project to nurture relationships between an unorganized (i.e. non-union) engineering research center and organized labor. Herein, we uplift stories from union members describing their pathways from higher education engineering programs to labor unions. Group interview conversations illuminating these stories offer broader contextualization for the sparseness and rarity of the paths from engineering programs to labor unions. Dialogue from group interviews further pointed toward opportunities to expand unionization pathways for engineering workers.more » « less
-
This work-in-progress paper shares findings of the early stage of a 3-year research funded by the National Science Foundation. The major aim of the project is to advance engineering and mathematics (EM) education theory and practice related to students’ self-regulation of cognition and motivation skills during problem-solving activities. The self-regulation includes students’ metacognitive knowledge about task (MKT) and self-regulation of cognition (SRC). The motivational component of self-regulation (SRM) includes self-control of the motivation needed to maintain the level of engagement and deliberate practice necessary for scientific thinking and reasoning. To be effective problem-solvers, students must understand the relationship between the MKT, SRC and SRM throughout the problem-solving activities. Four research questions will guide the research: (1) How do students perceive their self-regulation of cognition (SRC) and motivation (SRM) skills for generic problem-solving activities in EM courses; (2) How does students’ metacognitive knowledge about problem-solving tasks (MKT) inform their Task interpretation?; (3) How do students’ SRC and SRM dynamically evolve?; and (4) How do students’ SRC and SRM reflect their perceptions of self-regulation of cognition and motivation for generic EM problemsolving activities? A sequential mixed-methods research design involving quantitative and qualitative methods are used to develop complementary coarse- and fine-grained understandings of undergraduate students’ SRC and SRM during academic problem-solving activities. Two 2nd year EM courses: Engineering Statics, and Ordinary Differential Equations were purposefully selected for the contexts of the study. One hundred forty two students from both courses were invited and participated in quantitative data collection using two validated surveys during spring 2022 semester. Later in the semester, qualitative data will be generated with twenty students in both courses through one-on-one interviews with students and course instructors, think-aloud protocols with students, and classroom observations. Coarse-grained understandings of students’ SRC and SRM are currently developed through analysis of quantitative data collected using self-report surveys (i.e., BRoMS and PMI). Fine-grained understandings of students’ SRC and SRM will be developed through analysis of qualitative data gathered via one-on-one interviews, think-aloud protocols, classroom observations, and course artifacts gathered as students engage in EM problem-solving activities.more » « less
-
This paper shares the initial findings of a three-year research project. Quantitative methods were used to develop coarse-grained understandings of undergraduate students’ self-regulation of cognition (SRC) and self-regulation of motivation (SRM) during academic problem-solving activities in two undergraduate engineering and mathematics (EM) courses. Two research questions were constructed to guide this study: (1) How are SRC and SRM strategies related to each other while solving EM problems?; and (2) How do students perceive their SRC and SRM strategies for problem-solving activities in EM courses? Two 2nd year EM courses, Engineering Statics and Ordinary Differential Equations, were purposefully selected as the contexts of the study. There were a combined total of 142 students (120 male and 20 female), across both courses, that participated in quantitative data collection using two validated surveys during spring 2022. Quantitative data were collected using two selfreport surveys: Brief Regulation of Motivation Scale (BRoMS), and the Physics Metacognitive Inventory (PMI). Although PMI was initially designed for Physics, it can be used to assess students’ metacognition for problem solving in other knowledge domains by simply revising the word “physics” to another domain knowledge. Both descriptive and inferential statistics were conducted to analyze the collected quantitative data. During data analysis we found: (1) a significant relationship between students’ strategies to selfregulate their cognition and motivation during EM problem-solving activities; (2) no significant difference between male and female’s self-regulation of cognition (SRC) and self-regulation of motivation (SRM); (3) no significant difference of SRM between students who engaged in Engineering Statics and Ordinary Differential Equation problem-solving activities; and (4) a significant difference of reported strategies in interpreting problem and evaluating strategies between those who engaged in Engineering Statics and Ordinary Differential Equation problemsolving activities. Participants reported using certain SRM strategies, such as “If I need to, I have ways of convincing myself to keep working on a tough assignment” more frequently than other strategies during problem solving.more » « less
-
This theory paper considers prominent critical social theories from the education research literature to conceptualize a critical theoretical space to understand individual theory affordances, gaps and potential ways moving forward to examine military student experience in engineering education.more » « less
-
There is an urgent need to recruit, train, and sustain a diverse engineering workforce able to meet the socio-technical challenges of 21st century society. Together, student veterans and service members (SVSM) are a unique yet understudied student group that comprises substantial numbers of those historically underrepresented in engineering (i.e., due to race, ethnicity, gender, ability, orientation, etc.). That, in combination with technical interests and skills, maturity, life experience, and self-discipline, makes SVSM ideal candidates for helping engineering education meet these demands [1,2]. This NSF CAREER project aims to advance full participation of SVSMs within higher engineering education and the engineering workforce by 1) Research Plan: developing deeper understandings about how SVSM participate, persist, and produce professional identities in engineering and 2) Education Plan: putting new assets based understandings of SVSM experiences into practice through collaborative development, implementation and broad dissemination of evidence-based military ally and mentorship programs in engineering and awareness/support trainings for engineering faculty, staff, and administrators.more » « less