skip to main content


Search for: All records

Creators/Authors contains: "Minichiello, Angela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work-in-progress paper shares findings of the early stage of a 3-year research funded by the National Science Foundation. The major aim of the project is to advance engineering and mathematics (EM) education theory and practice related to students’ self-regulation of cognition and motivation skills during problem-solving activities. The self-regulation includes students’ metacognitive knowledge about task (MKT) and self-regulation of cognition (SRC). The motivational component of self-regulation (SRM) includes self-control of the motivation needed to maintain the level of engagement and deliberate practice necessary for scientific thinking and reasoning. To be effective problem-solvers, students must understand the relationship between the MKT, SRC and SRM throughout the problem-solving activities. Four research questions will guide the research: (1) How do students perceive their self-regulation of cognition (SRC) and motivation (SRM) skills for generic problem-solving activities in EM courses; (2) How does students’ metacognitive knowledge about problem-solving tasks (MKT) inform their Task interpretation?; (3) How do students’ SRC and SRM dynamically evolve?; and (4) How do students’ SRC and SRM reflect their perceptions of self-regulation of cognition and motivation for generic EM problemsolving activities? A sequential mixed-methods research design involving quantitative and qualitative methods are used to develop complementary coarse- and fine-grained understandings of undergraduate students’ SRC and SRM during academic problem-solving activities. Two 2nd year EM courses: Engineering Statics, and Ordinary Differential Equations were purposefully selected for the contexts of the study. One hundred forty two students from both courses were invited and participated in quantitative data collection using two validated surveys during spring 2022 semester. Later in the semester, qualitative data will be generated with twenty students in both courses through one-on-one interviews with students and course instructors, think-aloud protocols with students, and classroom observations. Coarse-grained understandings of students’ SRC and SRM are currently developed through analysis of quantitative data collected using self-report surveys (i.e., BRoMS and PMI). Fine-grained understandings of students’ SRC and SRM will be developed through analysis of qualitative data gathered via one-on-one interviews, think-aloud protocols, classroom observations, and course artifacts gathered as students engage in EM problem-solving activities. 
    more » « less
  2. This paper shares the initial findings of a three-year research project. Quantitative methods were used to develop coarse-grained understandings of undergraduate students’ self-regulation of cognition (SRC) and self-regulation of motivation (SRM) during academic problem-solving activities in two undergraduate engineering and mathematics (EM) courses. Two research questions were constructed to guide this study: (1) How are SRC and SRM strategies related to each other while solving EM problems?; and (2) How do students perceive their SRC and SRM strategies for problem-solving activities in EM courses? Two 2nd year EM courses, Engineering Statics and Ordinary Differential Equations, were purposefully selected as the contexts of the study. There were a combined total of 142 students (120 male and 20 female), across both courses, that participated in quantitative data collection using two validated surveys during spring 2022. Quantitative data were collected using two selfreport surveys: Brief Regulation of Motivation Scale (BRoMS), and the Physics Metacognitive Inventory (PMI). Although PMI was initially designed for Physics, it can be used to assess students’ metacognition for problem solving in other knowledge domains by simply revising the word “physics” to another domain knowledge. Both descriptive and inferential statistics were conducted to analyze the collected quantitative data. During data analysis we found: (1) a significant relationship between students’ strategies to selfregulate their cognition and motivation during EM problem-solving activities; (2) no significant difference between male and female’s self-regulation of cognition (SRC) and self-regulation of motivation (SRM); (3) no significant difference of SRM between students who engaged in Engineering Statics and Ordinary Differential Equation problem-solving activities; and (4) a significant difference of reported strategies in interpreting problem and evaluating strategies between those who engaged in Engineering Statics and Ordinary Differential Equation problemsolving activities. Participants reported using certain SRM strategies, such as “If I need to, I have ways of convincing myself to keep working on a tough assignment” more frequently than other strategies during problem solving. 
    more » « less
  3. This theory paper considers prominent critical social theories from the education research literature to conceptualize a critical theoretical space to understand individual theory affordances, gaps and potential ways moving forward to examine military student experience in engineering education. 
    more » « less
  4. There is an urgent need to recruit, train, and sustain a diverse engineering workforce able to meet the socio-technical challenges of 21st century society. Together, student veterans and service members (SVSM) are a unique yet understudied student group that comprises substantial numbers of those historically underrepresented in engineering (i.e., due to race, ethnicity, gender, ability, orientation, etc.). That, in combination with technical interests and skills, maturity, life experience, and self-discipline, makes SVSM ideal candidates for helping engineering education meet these demands [1,2]. This NSF CAREER project aims to advance full participation of SVSMs within higher engineering education and the engineering workforce by 1) Research Plan: developing deeper understandings about how SVSM participate, persist, and produce professional identities in engineering and 2) Education Plan: putting new assets based understandings of SVSM experiences into practice through collaborative development, implementation and broad dissemination of evidence-based military ally and mentorship programs in engineering and awareness/support trainings for engineering faculty, staff, and administrators. 
    more » « less
  5. The ever-increasing need for engineers to offer innovative solutions to complex interdisciplinary and global-societal issues requires an engineering workforce that is broadly diverse in experience and thought. Along with current efforts being made to increase diversity in engineering education programs and the engineering workforce on national and international scales, U.S. military students are increasingly recognized in the research literature as a potential source of diverse engineers. With the understanding that military students are not a single monolithic group, we frame this review by defining our target population of “military students” as postsecondary undergraduates enrolled at civilian institutions of higher education who a) have completed their service and are now military veterans or b) are concurrently serving in the U.S. Armed Forces, such as in the Reserves or National Guard, while attending college. Generally, this group of military students has served or are serving as enlisted servicemembers and are likely to be first-generation or from underrepresented racial and ethnic groups that have been historically underrepresented in engineering education [1] and the engineering workforce. In addition, both prior and current enlisted military students are widely considered to be those who have developed/will develop key attributes, such as a strong work ethic, maturity, and leadership skills, during their time in service that prepare them for academic success in engineering education and for impact in engineering careers [2]. 
    more » « less
  6. This methods paper describes the application of and insights gained from using aspects of an emerging methodology, agile ethnography, to study engineers working in practice. Research has suggested that there is a misalignment between what is taught in engineering school and the types of work that engineers do in practice [1]. Little is known about the types of engineering work that are conducted in practice [2], [3]. In order to best prepare engineering graduates to meet the demands of the engineering workforce, students should be taught the types of knowledge and problem-solving strategies that are commonly used by practicing engineers. By teaching students the problem-solving strategies that are used by their professional counterparts, the gap between what students are taught in school and what is expected of them in the workplace may be lessened. The purpose of this paper is to describe how agile ethnography [4], [5] was successfully used in our research project to examine workplace literacy practices and habits of mind employed by eight engineers in their workplaces over a period of three years. The overarching purpose of the project was to develop models of disciplinary literacy instruction [6] and habits of mind [7] in engineering, both of which are potential methods for teaching students the knowledge, skills, and strategies that may prepare them for an engineering career. Disciplinary literacy instruction teaches students the ways that practitioners use literacy practices when reading, writing, interpreting, and evaluating discipline-specific information [8]. Habits of mind are the intelligent behaviors that guide how professionals respond when faced with situations of uncertainty [9]. By understanding how engineers use disciplinary literacy practices and habits of mind in the workplace, models for student instruction can be developed. These instructional practices can be used to support students’ use of authentic engineering practices and ways of thinking that will support them in the classroom and in their future workplaces. Findings about the disciplinary practices and habits of mind of the eight engineers are presented in previous publications by the authors (e.g., [10]–[12]). 
    more » « less
  7. Currently, substantial efforts are underway to improve the engagement and retention of engineering and computer science (E/CS) students in their academic programs. Student participation in specific activities known as High Impact Educational Practices (HIP) has been shown to improve student outcomes across a variety of degree fields. Thus, we suggest that understanding how and why E/CS students, especially those from historically underrepresented groups, participate in HIP is vital for supporting efforts aimed at improving E/CS student engagement and retention. The aim of the current study is to examine the participation of E/CS undergraduates enrolled at two western land-grant institutions (both institutions are predominantly white; one is an emerging Hispanic-serving institution) across five HIEP (i.e., global learning and study aboard internships, learning communities, service and community-based learning, and undergraduate research) that are offered outside of required E/CS curricula and are widely documented in the research literature. As part of a larger study, researchers developed an online questionnaire to explore student HIP participation and then surveyed E/CS students (n = 576) across both land-grant institutions. Subsequently, researchers will use survey results to inform the development of focus groups interview protocols. Focus group interviews will be conducted with purposefully selected E/CS students who participated in the survey. Combined survey and focus group data will then be analyzed to more deeply understand why and how E/CS students participate in the HIP at their university. This research paper reports on the frequency distribution analysis of the survey data generated with E/CS undergraduates enrolled at one of the two land grant institutions. The combined sample included E/CS undergraduates from the following demographic groups: female (34 %), Asian (10 %), Black or African American (2%), Hispanic or Latinx (6%), Native American or Alaskan Native (1%), Native Hawaiian or Other Pacific Islander (1%), White (81 %), and multiracial (4 %). Results show that most (38%) E/CS students reported participating in internships, while study abroad programs garnered the smallest level of E/CS student participation (5%) across all five HIP. Internships were found most likely to engage diverse students: Female (42%), Hispanic or Latinx (24%), Multiracial (44%), Asian (31%), First-generation (29%), and nontraditional students—other than those categorized as highly nontraditional—all reported participating in internships more than any other HIP. Notable differences in participation across E/CS and demographic groups were found for other HIPs. Results further revealed that 43% of respondents did not participate in any extracurricular HIP and only 19% participated in two or more HIP. Insights derived from the survey and used to inform ongoing quantitative and qualitative analyses are discussed. Keywords: community-based learning, high impact educational practices, HIP, internships learning communities, service learning, study aboard, undergraduate research 
    more » « less
  8. Despite efforts to attract and retain more students in engineering and computer science — particularly women and students from underrepresented groups — diversity within these educational programs and the technical workforce remains stubbornly low. Research shows that undergraduate retention, persistence, and success in college is affected by several factors, including sense of belonging, task value, positive student-faculty interactions, school connectedness, and student engagement [1], [2]. Kuh [1] found that improvement in persistence, performance, and graduation for students in college were correlated to students’ level of participation in particular activities known as high impact educational practices (HIEP). HIEP include, among others, culminating experiences, learning communities, service learning, study abroad, and undergraduate research; Kuh [1] concluded that these activities may be effective at promoting overall student success. Kuh [1] and others [3] further hypothesized that participation in HIEP may especially benefit students from non-majority groups. Whether and how engineering and computer science students benefit from participating in HIEP and whether students from non-majority groups have access to HIEP activities, however, remain as questions to investigate. In this project, we examine engineering and computer science student participation in HIEP at two public land grant institutions. In this study, we seek to understand how and why students participate in HIEP and how participation affects their persistence and success in engineering and computer science majors. Set within the rural, public land grant university context, this study conceptualizes diversity in a broad sense and includes women, members of underrepresented racial and ethnic groups, first generation college students, adult learners, and nontraditional student as groups contributing to the diversity of academic programs and the technical workforce. 
    more » « less
  9. Despite efforts to diversify the science, technology, engineering, and mathematics (STEM) workforce, engineering remains a White, male-dominated profession. Often, women and underrepresented students do not identify with STEM careers and many opt out of STEM pathways prior to entering high school or college. In order to broaden participation in engineering, new methods of engaging and retaining those who are traditionally underrepresented in engineering are needed. This work is based on a promising approach for encouraging and supporting diverse participation in engineering: disciplinary literacy instruction (DLI). Generally, teachers use DLI to provide K-12 students with a framework for interpreting, evaluating, and generating discipline-specific texts. This instruction provides students with an understanding of how experts in the discipline read, engage, and generate texts used to solve problems or communicate information. While models of disciplinary literacy have been developed and disseminated in several humanities and science fields, there is a lack of empirical and theoretical research that examines the use of DLI within the engineering domain. It is thought that DLI can be used to foster diverse student interest in engineering from a young age by removing literacy-based barriers that often discourage underrepresented students from entering and pursuing careers in STEM fields. This work-in-progress paper describes a new study underway to develop and disseminate a model of disciplinary literacy in engineering. During this project, researchers will observe, interview, and collect written artifacts from engineers working across four sub-disciplines of engineering: aerospace/mechanical, biological, civil/environmental, and electrical/computer. Data that will be collected include interview transcripts, observation field notes, engineer logs of literacy practices, and photographs of texts that the engineers read and write. Data will be analyzed using constant comparative analytic (CCA) methods. CCA will be used to generate theoretical codes from the data that will form the basis for a model of disciplinary literacy in engineering. As a primary outcome of this research, the engineering DLI model will promote the use of DLI practices within K-12 engineering instruction in order to assist and encourage diverse, underrepresented students to engage in engineering courses of study and pursue STEM careers. Thus far, the research team has begun collecting and analyzing data from two electrical engineers. This work in progress paper will report on preliminary findings, as well as implications for K-12 classroom instruction. For instance, this study has shed insights on how engineers use texts as part of the process of conducting failure analysis, and the research team has begun to conceptualize how these types of texts might be used with K-12 students to help them conduct failure analyses during design testing. Ultimately, this project will result in a list of grade-appropriate texts, evaluative frameworks, and activities (e.g., failure analysis in testing) that K-12 engineering teachers can use to prepare their diverse students to think, act, read, and write like engineers. 
    more » « less