- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Minoguchi, Hajime (2)
-
Sponberg, Simon (2)
-
Aiello, Brett R (1)
-
Aiello, Brett R. (1)
-
Bhamla, M. Saad (1)
-
Bhinderwala, Burhanuddin (1)
-
Bomar, Kenji (1)
-
Fu, Harrison (1)
-
Gau, Jeff (1)
-
Hamilton, Chris A (1)
-
Kawahara, Akito Y (1)
-
Laws, Julia (1)
-
Morris, John G. (1)
-
Shubin, Neil H. (1)
-
Sikandar, Usama Bin (1)
-
Sripathi, Manognya (1)
-
Stewart, Thomas A. (1)
-
Washington, Kendra (1)
-
Wong, Gabriella (1)
-
da Cunha, Shashwati (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Blinking, the transient occlusion of the eye by one or more membranes, serves several functions including wetting, protecting, and cleaning the eye. This behavior is seen in nearly all living tetrapods and absent in other extant sarcopterygian lineages suggesting that it might have arisen during the water-to-land transition. Unfortunately, our understanding of the origin of blinking has been limited by a lack of known anatomical correlates of the behavior in the fossil record and a paucity of comparative functional studies. To understand how and why blinking originates, we leverage mudskippers (Oxudercinae), a clade of amphibious fishes that have convergently evolved blinking. Using microcomputed tomography and histology, we analyzed two mudskipper species, Periophthalmus barbarus and Periophthalmodon septemradiatus , and compared them to the fully aquatic round goby, Neogobius melanostomus . Study of gross anatomy and epithelial microstructure shows that mudskippers have not evolved novel musculature or glands to blink. Behavioral analyses show the blinks of mudskippers are functionally convergent with those of tetrapods: P. barbarus blinks more often under high-evaporation conditions to wet the eye, a blink reflex protects the eye from physical insult, and a single blink can fully clean the cornea of particulates. Thus, eye retraction in concert with a passive occlusal membrane can achieve functions associated with life on land. Osteological correlates of eye retraction are present in the earliest limbed vertebrates, suggesting blinking capability. In both mudskippers and tetrapods, therefore, the origin of this multifunctional innovation is likely explained by selection for increasingly terrestrial lifestyles.more » « less
-
Aiello, Brett R ; Sikandar, Usama Bin ; Minoguchi, Hajime ; Bhinderwala, Burhanuddin ; Hamilton, Chris A ; Kawahara, Akito Y ; Sponberg, Simon ( , Journal of The Royal Society Interface)
Across insects, wing shape and size have undergone dramatic divergence even in closely related sister groups. However, we do not know how morphology changes in tandem with kinematics to support body weight within available power and how the specific force production patterns are linked to differences in behaviour. Hawkmoths and wild silkmoths are diverse sister families with divergent wing morphology. Using three-dimensional kinematics and quasi-steady aerodynamic modelling, we compare the aerodynamics and the contributions of wing shape, size and kinematics in 10 moth species. We find that wing movement also diverges between the clades and underlies two distinct strategies for flight. Hawkmoths use wing kinematics, especially high frequencies, to enhance force and wing morphologies that reduce power. Silkmoths use wing morphology to enhance force, and slow, high-amplitude wingstrokes to reduce power. Both strategies converge on similar aerodynamic power and can support similar body weight ranges. However, inter-clade within-wingstroke force profiles are quite different and linked to the hovering flight of hawkmoths and the bobbing flight of silkmoths. These two moth groups fly more like other, distantly related insects than they do each other, demonstrating the diversity of flapping flight evolution and a rich bioinspired design space for robotic flappers.