A fast, robust pipeline for strain mapping of crystalline materials is important for many technological applications. Scanning electron nanodiffraction allows us to calculate strain maps with high accuracy and spatial resolutions, but this technique is limited when the electron beam undergoes multiple scattering. Deep-learning methods have the potential to invert these complex signals, but require a large number of training examples. We implement a Fourier space, complex-valued deep-neural network, FCU-Net, to invert highly nonlinear electron diffraction patterns into the corresponding quantitative structure factor images. FCU-Net was trained using over 200,000 unique simulated dynamical diffraction patterns from different combinations of crystal structures, orientations, thicknesses, and microscope parameters, which are augmented with experimental artifacts. We evaluated FCU-Net against simulated and experimental datasets, where it substantially outperforms conventional analysis methods. Our code, models, and training library are open-source and may be adapted to different diffraction measurement problems.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract The abrupt occurrence of twinning when Mg is deformed leads to a highly anisotropic response, making it too unreliable for structural use and too unpredictable for observation. Here, we describe an in-situ transmission electron microscopy experiment on Mg crystals with strategically designed geometries for visualization of a long-proposed but unverified twinning mechanism. Combining with atomistic simulations and topological analysis, we conclude that twin nucleation occurs through a pure-shuffle mechanism that requires prismatic-basal transformations. Also, we verified a crystal geometry dependent twin growth mechanism, that is the early-stage growth associated with instability of plasticity flow, which can be dominated either by slower movement of prismatic-basal boundary steps, or by faster glide-shuffle along the twinning plane. The fundamental understanding of twinning provides a pathway to understand deformation from a scientific standpoint and the microstructure design principles to engineer metals with enhanced behavior from a technological standpoint.more » « lessFree, publicly-accessible full text available December 1, 2023
-
Abstract Corrosion is a ubiquitous failure mode of materials. Often, the progression of localized corrosion is accompanied by the evolution of porosity in materials previously reported to be either three-dimensional or two-dimensional. However, using new tools and analysis techniques, we have realized that a more localized form of corrosion, which we call 1D wormhole corrosion, has previously been miscategorized in some situations. Using electron tomography, we show multiple examples of this 1D and percolating morphology. To understand the origin of this mechanism in a Ni-Cr alloy corroded by molten salt, we combined energy-filtered four-dimensional scanning transmission electron microscopy and ab initio density functional theory calculations to develop a vacancy mapping method with nanometer-resolution, identifying a remarkably high vacancy concentration in the diffusion-induced grain boundary migration zone, up to 100 times the equilibrium value at the melting point. Deciphering the origins of 1D corrosion is an important step towards designing structural materials with enhanced corrosion resistance.
-
Plasmonic cathodes, whose nanoscale features may locally enhance optical energy from the driving laser trapped at the vacuum interface, have emerged as a promising technology for improving the brightness of metal cathodes. A six orders of magnitude improvement [1] in the non-linear yield of metals has been experimentally demonstrated through this type of nanopatterning. Further, nanoscale lens structures may focus light below its free-space wavelength offering multiphoton photoemission from a region near 10 times smaller [2] than that achievable in typical photoinjectors. In this proceeding, we report on our efforts to characterize the brightness of two plasmonic cathode concepts: a spiral lens and a nanogroove array. We demonstrate an ability to engineer and fabricate nanoscale patterned cathodes by comparing their optical properties with those computed with a finite difference time domain (FDTD) code. The emittance and nonlinear yield of the cathodes are measured under ultrafast laser irradiation. Finally, prospects of this technology for the control and acceleration of charged particle beams are discussed.more » « less
-
Electron microscopy is uniquely suited for atomic-resolution imaging of heterogeneous and complex materials, where composition, physical, and electronic structure need to be analyzed simultaneously. Historically, the technique has demonstrated optimal performance at room temperature, since practical aspects such as vibration, drift, and contamination limit exploration at extreme temperature regimes. Conversely, quantum materials that exhibit exotic physical properties directly tied to the quantum mechanical nature of electrons are best studied (and often only exist) at extremely low temperatures. As a result, emergent phenomena, such as superconductivity, are typically studied using scanning probe-based techniques that can provide exquisite structural and electronic characterization, but are necessarily limited to surfaces. In this article, we focus not on the various methods that have been used to examine quantum materials at extremely low temperatures, but on what could be accomplished in the field of quantum materials if the power of electron microscopy to provide structural analysis at the atomic scale was extended to extremely low temperatures.more » « less
-
Recent molecular dynamics simulations revealed that 〈 c + a 〉 dislocations in Mg were prone to dissociation on the basal plane, thus becoming sessile. Basal dissociation of 〈 c + a 〉 dislocations is significant because it is a major factor in the limited ductility and high work-hardening in Mg. We report an in situ transmission electron microscopy study of the deformation process using an H-bar-shaped thin foil of Mg single crystal designed to facilitate 〈 c + a 〉 slip, observe 〈 c + a 〉 dislocation activity, and establish the validity of the largely immobile 〈 c + a 〉 dislocations caused by the predicted basal dissociation. In addition, through detailed observations on the fine movement of some 〈 c + a 〉 dislocations, it was revealed that limited bowing out movement for some non-basal portions of 〈 c + a 〉 dislocations was possible; under certain circumstances, i.e., through attraction and reaction between two 〈 c + a 〉 dislocations on the same pyramidal plane, at least portions of the sessile configuration were observed to be reversed into a glissile one.more » « less
-
In our previous study, we observed a lack of $\left\{ {10\bar{1}2} \right\}$ twinning in a deformed Mg–Y alloy, which contributed to the observed yield “symmetry.” However, the effects of texture and grain size on polycrystalline deformation made it difficult to fully understand why twinning was not active. Therefore, we report herein in-depth study by in situ transmission electron microscopy, i.e., in situ TEM. The in situ deformation of nano-sized Mg–Y pillars revealed that prismatic slip was favored over twinning, namely, the critical stress required to activate prismatic slip was lower than that for twinning. This finding diametrically differs from that reported in other nano/micro-pillar deformation studies, where twinning is always the dominant deformation mechanism. By measuring the critical stresses for basal, prismatic, and pyramidal slip systems, this in situ TEM study also sheds light on the effects of the alloying element Y on reducing the intrinsic plastic anisotropy in the Mg matrix.more » « less