skip to main content


Search for: All records

Creators/Authors contains: "Minsley, B. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Warming temperatures and increasing disturbance by wildfire and extreme weather events is driving permafrost change across northern latitudes. The state of permafrost varies widely in space and time, depending on landscape, climate, hydrologic, and ecological factors. Despite its importance, few approaches commonly measure and monitor the changes in deep (>1 m) permafrost conditions with high spatial resolution. Here, we use electrical resistivity tomography surveys along two transects in interior Alaska previously disturbed by wildfire and more recently by warming temperatures and extreme precipitation. Long‐term point observations of permafrost depth, temperature, and water content inform geophysical measurements which, in turn, are used to extrapolate interpretations over larger areas and with high spatial fidelity. We contrast gradual loss of recently formed permafrost driven by warmer temperatures and increased snowfall, with rapid permafrost loss driven by changes in air temperature, snow depth, and extreme summer precipitation in 2014.

     
    more » « less
  2. Abstract

    Thermokarst lakes accelerate deep permafrost thaw and the mobilization of previously frozen soil organic carbon. This leads to microbial decomposition and large releases of carbon dioxide (CO2) and methane (CH4) that enhance climate warming. However, the time scale of permafrost-carbon emissions following thaw is not well known but is important for understanding how abrupt permafrost thaw impacts climate feedback. We combined field measurements and radiocarbon dating of CH4ebullition with (a) an assessment of lake area changes delineated from high-resolution (1–2.5 m) optical imagery and (b) geophysical measurements of thaw bulbs (taliks) to determine the spatiotemporal dynamics of hotspot-seep CH4ebullition in interior Alaska thermokarst lakes. Hotspot seeps are characterized as point-sources of high ebullition that release14C-depleted CH4from deep (up to tens of meters) within lake thaw bulbs year-round. Thermokarst lakes, initiated by a variety of factors, doubled in number and increased 37.5% in area from 1949 to 2009 as climate warmed. Approximately 80% of contemporary CH4hotspot seeps were associated with this recent thermokarst activity, occurring where 60 years of abrupt thaw took place as a result of new and expanded lake areas. Hotspot occurrence diminished with distance from thermokarst lake margins. We attribute older14C ages of CH4released from hotspot seeps in older, expanding thermokarst lakes (14CCH420 079 ± 1227 years BP, mean ± standard error (s.e.m.) years) to deeper taliks (thaw bulbs) compared to younger14CCH4in new lakes (14CCH48526 ± 741 years BP) with shallower taliks. We find that smaller, non-hotspot ebullition seeps have younger14C ages (expanding lakes 7473 ± 1762 years; new lakes 4742 ± 803 years) and that their emissions span a larger historic range. These observations provide a first-order constraint on the magnitude and decadal-scale duration of CH4-hotspot seep emissions following formation of thermokarst lakes as climate warms.

     
    more » « less
  3. Abstract

    The impact of permafrost thaw on hydrologic, thermal, and biotic processes remains uncertain, in part due to limitations in subsurface measurement capabilities. To better understand subsurface processes in thermokarst environments, we collocated geophysical and biogeochemical instruments along a thaw gradient between forested permafrost and collapse‐scar bogs at the Alaska Peatland Experiment site near Fairbanks, Alaska. Ambient seismic noise monitoring provided continuous high‐temporal resolution measurements of water and ice saturation changes. Maps of seismic velocity change identified areas of large summertime velocity reductions nearest the youngest bog, indicating potential thaw and expansion at the bog margin. These results corresponded well with complementary borehole nuclear magnetic resonance measurements of unfrozen water content with depth, which showed permafrost soils nearest the bog edges contained the largest amount of unfrozen water along the study transect, up to 25% by volume. In situ measurements of methane within permafrost soils revealed high concentrations at these bog‐edge locations, up to 30% soil gas. Supra‐permafrost talik zones were observed at the bog margins, indicating talik formation and perennial liquid water may drive lateral bog expansion and enhanced permafrost carbon losses preceding thaw. Comparison of seismic monitoring with wintertime surface carbon dioxide fluxes revealed differential responses depending on time and proximity to the bogs, capturing the controlling influence of subsurface water and ice on microbial activity and surficial emissions. This study demonstrates a multidisciplinary approach for gaining new understanding of how subsurface physical properties influence greenhouse gas production, emissions, and thermokarst development.

     
    more » « less