skip to main content

Search for: All records

Creators/Authors contains: "Mirabelli, Joseph F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Mental health for engineering undergraduates is an urgent topic for engineering educators. Narratives of engineering education requiring suffering may create or exacerbate problematic perceptions around stress and mental health in engineering. This study explored the roles of stress and mental health in engineering culture. We sought to explore: (1) how engineering students describe their experiences related to stress and mental health and (2) norms and expectations engineering students share about stress and mental health. Qualitative interview data were collected from 30 students who had previously responded to a college-wide survey.


    Codes related to experiences with stress and mental health in engineering were organized in a bioecological systems model and analyzed for emergent themes depicting engineering culture. The study identified three themes related to stress and mental health in engineering culture: (1) engineering workload as a defining stressor, (2) specific barriers that prevent engineering students from seeking help for mental health concerns, and (3) reliance on peers to cope with stress and mental health distress.


    Our analysis provided insight into how engineering students perceive norms around stress and mental health in engineering and how this impacts help-seeking for mental health challenges. These findings have important implications for developing interventions and positive cultures that support student mental health.

    more » « less
  2. Recent international calls have been made to build capacity in engineering by increasing the number of scholars using research-based instructional practices in engineering classrooms. Training traditional engineering professors to conduct engineering education research (EER) supports this goal. Previous work suggests that engineering professors interested in perform­ing social sciences or educational research require structured support when making this transition. We interviewed 18 professors engaged with a grant opportunity in the United States that supports professors conducting EER for the first time through structured mentor­ship. Thematic analysis of interview data resulted in four findings describing common percep­tions and experiences of traditional engineering professors as they begin to conduct formalised EER: motivation to conduct EER, institutional support and barriers, growth in knowl­edge, and integrating with EER culture. Within these findings, barriers to entering EER were uncovered with implications for professors interested in EER, funding agencies, and prospec­tive mentors, resulting in suggestions for improving access to EER for professors developing as teaching scholars. 
    more » « less
  3. Reports on results from the first year of the RFE project, in which PhD engineering students were interviewed about stressors. 
    more » « less
  4. null (Ed.)