Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Accurate quantum efficiency measurement not only provides crucial information for the photovoltaic cell industry but also supports experiments aimed at directly detecting dark matter and elastic neutrino interactions. The dark matter direct searches paradigm has recently expanded to include particles with masses below 1,MeV/c2, where the expected signal in an electron–recoil interaction is approximately in the eV range, just above the energy gap for silicon and germanium. A robust calibration method for ionization signals in this lower energy region is essential. This paper presents a method for measuring quantum efficiency and yield (q/E) in semiconductors using phonon-mediated calorimetry. The Neganov–Trofimov–Luke phonon amplification method in low-temperature semiconductor crystals has been employed to indirectly measure ionization down to single-electron accuracy. Specifically, at zero bias, the phonon readout directly quantifies the total energy deposited within the detector, independent of the ionization yield. This eliminates a significant source of systematic uncertainty in quantum efficiency estimates associated with total energy uncertainty. The paper includes results from an updated ionization efficiency measurement in a germanium detector.more » « less
-
This article presents constraints on dark-matter-electron interactions obtained from the first underground data-taking campaign with multiple SuperCDMS HVeV detectors operated in the same housing. An exposure of is used to set upper limits on the dark-matter-electron scattering cross section for dark matter masses between 0.5 and , as well as upper limits on dark photon kinetic mixing and axionlike particle axioelectric coupling for masses between 1.2 and . Compared to an earlier HVeV search, sensitivity was improved as a result of an increased overburden of 225 meters of water equivalent, an anticoincidence event selection, and better pile-up rejection. In the case of dark-matter-electron scattering via a heavy mediator, an improvement by up to a factor of 25 in cross section sensitivity was achieved. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026
-
We present the design and characterization of a large-area Cryogenic PhotoDetector designed for active particle identification in rare event searches, such as neutrinoless double beta decay and dark matter experiments. The detector consists of a 45.6 cm2 surface area by a 1-mm-thick 10.6 g Si wafer. It is instrumented with a distributed network of Quasiparticle-trap-assisted Electrothermal feedback Transition-edge sensors with superconducting critical temperature Tc=41.5 mK to measure athermal phonons released from interactions with photons. The detector is characterized and calibrated with a collimated 55Fe x-ray source incident on the center of the detector. The noise equivalent power is measured to be 1×10−17 W/Hz in a bandwidth of 2.7 kHz. The baseline energy resolution is measured to be σE=3.86±0.04 (stat.)−0.00+0.19 (syst.) eV. The detector also has an expected timing resolution of σt=2.3 μs for 5 σE events.more » « less
-
In this letter, we present the performance of a 100 μm × 400 μm × 40 nm W Transition-Edge Sensor with a critical temperature of 40 mK. This device has a noise equivalent power of 1.5×10-18 W/Hz, in a bandwidth of 2.6 kHz, indicating a resolution for Dirac delta energy depositions of 40 ± 5 meV (rms). The performance demonstrated by this device is a critical step toward developing a O(100) meV threshold athermal phonon detector for low-mass dark matter searches.more » « less