skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Miransky, V A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The spectrum of collective excitations in Weyl materials is studied by using a consistent hydro- dynamics. The corresponding framework includes the vortical and chiral anomaly effects, as well as the dependence on the separation between the Weyl nodes in energy b0 and momentum b. The latter are introduced via the Chern–Simons contributions to the electric current and charge densities in the Maxwell’s equations. It is found that, even in the absence of a background magnetic field, certain collective excitations (e.g., the helicon-like modes and anomalous Hall waves) are strongly affected by the chiral shift b. In a background magnetic field, the existence of distinctive longi- tudinal and transverse anomalous Hall waves with a linear dispersion relation is predicted. They originate from the oscillations of the electric charge density and electromagnetic fields, in which different components of the fields are connected via the anomalous Hall effect in Weyl semimetals. 
    more » « less