Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The CLAS12 deep-inelastic scattering experiment at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab conjugates luminosity and wide acceptance to study the 3D nucleon structure in the yet poorly explored valence region, and to perform precision measurements in hadron spectroscopy. A large area ring-imaging Cherenkov detector has been designed to achieve the required hadron identification in the momentum range from 3 GeV/c to 8 GeV/c, with the kaon rate about one order of magnitude lower than the rate of pions and protons. The adopted solution comprises aerogel radiator and composite mirrors in a novel hybrid optics design, where either direct or reflected light could be imaged in a high-packed and high segmented photon detector. The first RICH module was assembled during the second half of 2017 and installed at the beginning of January 2018, in time for the start of the experiment. The second RICH module, planned with the goal to be ready for the beginning of the operation with polarized targets, has been timely built despite the complications caused by the pandemic crisis and successfully installed in June 2022. The detector performance is here discussed with emphasis on the operation and stability during the data-taking, calibration and alignment procedures, reconstruction and pattern recognition algorithms, and particle identification.more » « less
-
Measuring deeply virtual Compton scattering (DVCS) on the neutron is one of the necessary steps to understand the structure of the nucleon in terms of generalized parton distributions (GPDs). Neutron targets play a complementary role to transversely polarized proton targets in the determination of the GPD. This poorly known and poorly constrained GPD is essential to obtain the contribution of the quarks’ angular momentum to the spin of the nucleon. DVCS on the neutron was measured for the first time selecting the exclusive final state by detecting the neutron, using the Jefferson Lab longitudinally polarized electron beam, with energies up to 10.6 GeV, and the CLAS12 detector. The extracted beam-spin asymmetries, combined with DVCS observables measured on the proton, allow a clean quark-flavor separation of the imaginary parts of the Compton form factorsand.
Published by the American Physical Society 2024 Free, publicly-accessible full text available November 1, 2025 -
Free, publicly-accessible full text available February 1, 2025
-
Free, publicly-accessible full text available September 1, 2025