skip to main content

Search for: All records

Creators/Authors contains: "Mirshekari, Mostafa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Muscular dystrophies (MD) are a group of genetic neuromuscular disorders that cause progressive weakness and loss of muscles over time, influencing 1 in 3500–5000 children worldwide. New and exciting treatment options have led to a critical need for a clinical post-marketing surveillance tool to confirm the efficacy and safety of these treatments after individuals receive them in a commercial setting. For MDs, functional gait assessment is a common approach to evaluate the efficacy of the treatments because muscle weakness is reflected in individuals’ walking patterns. However, there is little incentive for the family to continue to travel for such assessments due to the lack of access to specialty centers. While various existing sensing devices, such as cameras, force plates, and wearables can assess gait at home, they are limited by privacy concerns, area of coverage, and discomfort in carrying devices, which is not practical for long-term, continuous monitoring in daily settings. In this study, we introduce a novel functional gait assessment system using ambient floor vibrations, which is non-invasive and scalable, requiring only low-cost and sparsely deployed geophone sensors attached to the floor surface, suitable for in-home usage. Our system captures floor vibrations generated by footsteps from patients while they walk around and analyzes such vibrations to extract essential gait health information. To enhance interpretability and reliability under various sensing scenarios, we translate the signal patterns of floor vibration to pathological gait patterns related to MD, and develop a hierarchical learning algorithm that aggregates insights from individual footsteps to estimate a person’s overall gait performance. When evaluated through real-world experiments with 36 subjects (including 15 patients with MD), our floor vibration sensing system achieves a 94.8% accuracy in predicting functional gait stages for patients with MD. Our approach enables accurate, accessible, and scalable functional gait assessment, bringing MD progressive tracking into real life.

    more » « less
  2. In this paper, we present a multiple concurrent occupant identification approach through footstep-induced floor vibration sensing. Identification of human occupants is useful in a variety of indoor smart structure scenarios, with applications in building security, space allocation, and healthcare. Existing approaches leverage sensing modalities such as vision, acoustic, RF, and wearables, but are limited due to deployment constraints such as line-of-sight requirements, sensitivity to noise, dense sensor deployment, and requiring each walker to wear/carry a device. To overcome these restrictions, we use footstep-induced structural vibration sensing. Footstep-induced signals contain information about the occupants' unique gait characteristics, and propagate through the structural medium, which enables sparse and passive identification of indoor occupants. The primary research challenge is that multiple-person footstep-induced vibration responses are a mixture of structurally-codependent overlapping individual responses with unknown timing, spectral content, and mixing ratios. As such, it is difficult to determine which part of the signal corresponds to each occupant. We overcome this challenge through a recursive sparse representation approach based on cosine distance that identifies each occupant in a footstep event in the order that their signals are generated, reconstructs their portion of the signal, and removes it from the mixed response. By leveraging sparse representation, our approach can simultaneously identify and separate mixed/overlapping responses, and the use of the cosine distance error function reduces the influence of structural codependency on the multiple walkers' signals. In this way, we isolate and identify each of the multiple occupants' footstep responses. We evaluate our approach by conducting real-world walking experiments with three concurrent walkers and achieve an average F1 score for identifying all persons of 0.89 (1.3x baseline improvement), and with a 10-person "hybrid" dataset (simulated combination of single-walker real-world data), we identify 2, 3, and 4 concurrent walkers with a trace-level accuracy of 100%, 93%, and 73%, respectively, and observe as much as a 2.9x error reduction over a naive baseline approach. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)