Polarimetric variables such as differential phase ΦDPand its range derivative, specific differential phase
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
00000010000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Mahale, Vivek_N (1)
-
Mishler, Reese (1)
-
Zhang, Guifu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract K DP, contain useful information for improving quantitative precipitation estimation (QPE) and microphysics retrieval. However, the usefulness of the current operationally utilized estimation method ofK DPis limited by measurement error and artifacts resulting from the differential backscattering phaseδ . The contribution ofδ can significantly influence the ΦDPmeasurements and therefore negatively affect theK DPestimates. Neglecting the presence ofδ within non-Rayleigh scattering regimes has also led to the adoption of incorrect terminology regarding signatures seen within current operationalK DPestimates implying associated regions of unrealistic liquid water content. A new processing method is proposed and developed to estimate bothK DPandδ using classification and linear programming (LP) to reduce bias inK DPestimates caused by theδ component. It is shown that by applying the LP technique specifically to the rain regions of Rayleigh scattering along a radial profile, accurate estimates of differential propagation phase, specific differential phase, and differential backscattering phase can be retrieved within regions of both Rayleigh and non-Rayleigh scattering. This new estimation method is applied to cases of reported hail and tornado debris, and the LP results are compared to the operationally utilized least squares fit (LSF) estimates. The results show the potential use of the differential backscattering phase signature in the detection of hail and tornado debris.