Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Abstract Multiple species within the order Hemiptera cause severe agricultural losses on a global scale. Aphids and whiteflies are of particular importance due to their role as vectors for hundreds of plant viruses, many of which enter the insect via the gut. To facilitate the identification of novel targets for disruption of plant virus transmission, we compared the relative abundance and composition of the gut plasma membrane proteomes of adultBemisia tabaci(Hemiptera: Aleyrodidae) andMyzus persicae(Hemiptera: Aphididae), representing the first study comparing the gut plasma membrane proteomes of two different insect species. Brush border membrane vesicles were prepared from dissected guts, and proteins extracted, identified and quantified from triplicate samples via timsTOF mass spectrometry. A total of 1699B. tabaciand 1175M. persicaeproteins were identified. Following bioinformatics analysis and manual curation, 151B. tabaciand 115M. persicaeproteins were predicted to localize to the plasma membrane of the gut microvilli. These proteins were further categorized based on molecular function and biological process according to Gene Ontology terms. The most abundant gut plasma membrane proteins were identified. The ten plasma membrane proteins that differed in abundance between the two insect species were associated with the terms “protein binding” and “viral processes.” In addition to providing insight into the gut physiology of hemipteran insects, these gut plasma membrane proteomes provide context for appropriate identification of plant virus receptors based on a combination of bioinformatic prediction and protein localization on the surface of the insect gut.more » « less
-
Abstract Pesticidal proteins derived from the bacterium Bacillus thuringiensis, have provided the bases for a diverse array of pest management tools ranging from natural products used in organic agriculture, to modern biotechnological approaches. With advances in genome sequencing technologies and protein structure determination, an increasing number of pesticidal proteins from myriad bacterial species have been identified. The Bacterial Pesticidal Protein Resource Center (BPPRC) has been established to provide informational and analytical resources on the wide range of pesticidal proteins derived from bacteria that have potential utility for arthropod management. In association with a revised nomenclature for these proteins, BPPRC contains a database that allows users to browse and download sequences. Users can search the database for the best matches to sequences of interest and can incorporate their own sequences into basic informatic analyses. These analyses include the ability to draw and export guide trees from either whole protein sequences or, in the case of the three-domain Cry proteins, from individual domains. The associated website also provides a portal for users to submit protein sequences for naming. The BPPRC provides a single authoritative source of information to which all stakeholders can be referred including academics, government regulatory bodies and research and development personnel in the industrial sector. The database provides information on more than 1060 pesticidal proteins derived from 13 species of bacteria, including insecticidal activities for a subset of these proteins. Database URL: www.bpprc.org and www.bpprc-db.org/more » « less
An official website of the United States government
