- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Czajka, Adam (2)
-
Mitcheff, Mahsa (2)
-
Tinsley, Patrick (2)
-
Aravena, Carlos (1)
-
Bowyer, Kevin (1)
-
Boyd, Aidan (1)
-
Busch, Christoph (1)
-
Chang, Zhaohua (1)
-
Crum, Colton (1)
-
Damer, Naser (1)
-
Fang, Meiling (1)
-
Flynn, Patrick (1)
-
Li, Xinyue (1)
-
Liu, Xingyu (1)
-
Purnapatra, Sandip (1)
-
Schuckers, Stephanie (1)
-
Schulz, Daniel (1)
-
Sun, Xianyun (1)
-
Tapia, Juan (1)
-
Wang, Caiyong (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper proposes a framework for a privacy-safe iris presentation attack detection (PAD) method, designed solely with synthetically-generated, identity-leakage-free iris images. Once trained, the method is evaluated in a classical way using state-of-the-art iris PAD benchmarks. We designed two generative models for the synthesis of ISO/IEC 19794-6-compliant iris images. The first model synthesizes bona fide-looking samples. To avoid "identity leakage," the generated samples that accidentally matched those used in the model’s training were excluded. The second model synthesizes images of irises with textured contact lenses and is conditioned by a given contact lens brand to have better control over textured contact lens appearance when forming the training set. Our experiments demonstrate that models trained solely on synthetic data achieve a lower but still reasonable performance when compared to solutions trained with iris images collected from human subjects. This is the first-of-its-kind attempt to use solely synthetic data to train a fully-functional iris PAD solution, and despite the performance gap between regular and the proposed methods, this study demonstrates that with the increasing fidelity of generative models, creating such privacy-safe iris PAD methods may be possible. The source codes and generative models trained for this work are offered along with the paper.more » « less
-
Tinsley, Patrick; Purnapatra, Sandip; Mitcheff, Mahsa; Boyd, Aidan; Crum, Colton; Bowyer, Kevin; Flynn, Patrick; Schuckers, Stephanie; Czajka, Adam; Fang, Meiling; et al (, IEEE)This paper describes the results of the 2023 edition of the “LivDet” series of iris presentation attack detection (PAD) competitions. New elements in this fifth competition include (1) GAN-generated iris images as a category of presentation attack instruments (PAI), and (2) an evaluation of human accuracy at detecting PAI as a reference benchmark. Clarkson University and the University of Notre Dame contributed image datasets for the competition, composed of samples representing seven different PAI categories, as well as baseline PAD algorithms. Fraunhofer IGD, Beijing University of Civil Engineering and Architecture, and Hochschule Darmstadt contributed results for a total of eight PAD algorithms to the competition. Accuracy results are analyzed by different PAI types, and compared to human accuracy. Overall, the Fraunhofer IGD algorithm, using an attention-based pixel-wise binary supervision network, showed the best-weighted accuracy results (average classification error rate of 37.31%), while the Beijing University of Civil Engineering and Architecture’s algorithm won when equal weights for each PAI were given (average classification rate of 22.15%). These results suggest that iris PAD is still a challenging problem.more » « less
An official website of the United States government
