skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Mitchell, Cathryn N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dense, fast-moving regions of ionization called polar cap patches are known to occur in thehigh-latitudeFregion ionosphere. Patches are widely believed to be caused by convection of dense, sunlitplasma into a dark and therefore low-density polar cap ionosphere. This leads to the belief that patches are awinter phenomenon. Surprisingly, a long-term analysis of 3 years of ionospheric measurements from theSwarm satellites shows that large density enhancements occur far more frequently in local summer than localwinter in the Southern Hemisphere (SH). The reverse is true in the Northern Hemisphere (NH). Previouslyreported patch detections in the SH are reexamined. Detection algorithms using only a relative doubling testcount very small densityfluctuations in SH winter due to extremely low ambient densities found there,while much larger enhancements occurring in SH summer are missed due to especially high ambientdensities. The same problem does not afflict results in the NH, where ambient densities are more stableyear-round due to the ionospheric annual asymmetry. Given this new analysis, the definition of a patch as adoubling of the ambient density is not suitable for the SH. We propose a test for patches linked to long-termaveraged solarflux activity, characterized by the 81 day centered meanF10.7index. Importantly, thecurrent patch formation theory is at least incomplete in that it does not predict the observed lack of patchesin SH winter, or the many large enhancements seen in SH summer 
    more » « less
  2. Abstract

    The polarFregion ionosphere frequently exhibits sporadic variability (e.g., Meek, 1949,https://doi.org/10.1029/JZ054i004p00339; Hill, 1963,https://doi.org/10.1175/1520‐0469(1963)020<0492:SEOLII>2.0.CO;2). Recent satellite data analysis (Noja et al., 2013,https://doi.org/10.1002/rds.20033; Chartier et al., 2018,https://doi.org/10.1002/2017JA024811) showed that the high‐latitudeFregion ionosphere exhibits sporadic enhancements more frequently in January than in July in both the northern and southern hemispheres. The same pattern has been seen in statistics of the degradation and total loss of GPS service onboard low‐Earth orbit satellites (Xiong et al. 2018,https://doi.org/10.5194/angeo‐36‐679‐2018). Here, we confirm the existence of this annual pattern using ground GPS‐based images of TEC from the MIDAS algorithm. Images covering January and July 2014 confirm that the high‐latitude (>70 MLAT)Fregion exhibits a substantially larger range of values in January than in July in both the northern and southern hemispheres. The range of TEC values observed in the polar caps is 38–57 TECU (north‐south) in January versus 25–37 TECU in July. First‐principle modeling using SAMI3 reproduces this pattern, and indicates that it is caused by an asymmetry in plasma levels (30% higher in January than in July across both polar caps), as well as 17% longer O+plasma lifetimes in northern hemisphere winter, compared to southern hemisphere winter.

     
    more » « less