Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report observations of direct evidence of energetic protons being accelerated above ∼400 keV within the reconnection exhaust of a heliospheric current sheet (HCS) crossing by NASA’s Parker Solar Probe (PSP) at a distance of ∼16.25 solar radii (Rs) from the Sun. Inside the exhaust, both the reconnection-generated plasma jet and the accelerated protons up to ∼400 keV propagated toward the Sun, unambiguously establishing their origin from HCS reconnection sites located antisunward of PSP. Within the core of the exhaust, PSP detected stably trapped energetic protons up to ∼400 keV, which is ≈1000 times greater than the available magnetic energy per particle. The differential energy spectrum of the accelerated protons behaved as a pure power law with spectral index of ∼−5. Supporting simulations using thekglobalmodel suggest that the trapping and acceleration of protons up to ∼400 keV in the reconnection exhaust are likely facilitated by merging magnetic islands with a guide field between ∼0.2 and 0.3 of the reconnecting magnetic field, consistent with the observations. These new results, enabled by PSP’s proximity to the Sun, demonstrate that magnetic reconnection in the HCS is a significant new source of energetic particles in the near-Sun solar wind. Our findings of in situ particle acceleration via magnetic reconnection at the HCS provide valuable insights into this fundamental process, which frequently converts the large magnetic field energy density in the near-Sun plasma environment and may be responsible for heating the Sun’s atmosphere, accelerating the solar wind, and energizing charged particles to extremely high energies in solar flares.more » « lessFree, publicly-accessible full text available May 29, 2026
-
Abstract In this paper we examine a low-energy solar energetic particle (SEP) event observed by IS⊙IS’s Energetic Particle Instrument-Low (EPI-Lo) inside 0.18 au on 2020 September 30. This small SEP event has a very interesting time profile and ion composition. Our results show that the maximum energy and peak in intensity are observed mainly along the open radial magnetic field. The event shows velocity dispersion, and strong particle anisotropies are observed throughout the event, showing that more particles are streaming outward from the Sun. We do not see a shock in the in situ plasma or magnetic field data throughout the event. Heavy ions, such as O and Fe, were detected in addition to protons and 4He, but without significant enhancements in 3He or energetic electrons. Our analysis shows that this event is associated with a slow streamer blowout coronal mass ejection (SBO-CME), and the signatures of this small CME event are consistent with those typical of larger CME events. The time–intensity profile of this event shows that the Parker Solar Probe encountered the western flank of the SBO-CME. The anisotropic and dispersive nature of this event in a shockless local plasma gives indications that these particles are most likely accelerated remotely near the Sun by a weak shock or compression wave ahead of the SBO-CME. This event may represent direct observations of the source of the low-energy SEP seed particle population.more » « less
-
Abstract Energetic electron flux enhancements for 100s keV energies are often observed at lowLshells (L < 4) in the inner magnetosphere during geomagnetic storms. However, protons with similar energies do not penetrate as deeply as electrons. Electric fields from subauroral polarization streams (SAPS) have been proposed as a mechanism to explain the difference between the 100s keV electron and proton behavior by altering the particles’ drift paths and allowing electrons to access lowerLshells than protons. Although the primary signature of SAPS is a strong radial electric field, there are corresponding westward/eastward azimuthal electric fields on the eastern/western regions of the SAPS that cause inward/outward radial transport and a differential response between the oppositely drifting electrons and protons. We examine three events where SAPS were observed by the Van Allen Probes near the same time andLshell range as 100s keV electron enhancements deep within the inner magnetosphere. The observations demonstrate that 100s keV electrons were progressively transported radially inward and trapped at lowLshells that were consistent with the spatial extent of the SAPS electric fields. Proton flux enhancements were limited to <100 keV energies and were only observed temporarily in the SAPS region, indicating that these particles were on open drift paths. The particle observations are consistent with the differential drift paths for electrons and protons predicted by a simple SAPS electric field model, suggesting that SAPS play an important role in 100s keV particle dynamics at lowLshells in the inner magnetosphere.more » « less
-
Abstract We present observations of ≳10–100 keV nucleon −1 suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track the magnetic field polarity reversal and show up to ∼10:1 anti-sunward, field-aligned flows and beams closer to the HCS that become nearly isotropic farther from the HCS; (4) the He spectrum steepens either side of the HCS, and the He, O, and Fe spectra exhibit power laws of the form ∼ E −4 – E 6 ; and (5) maximum energies E X increase with the ion’s charge-to-mass ( Q / M ) ratio as E X / E H ∝ ( Q X / M X ) δ , where δ ∼ 0.65–0.76, assuming that the average Q states are similar to those measured in gradual and impulsive solar energetic particle events at 1 au. The absence of velocity dispersion in combination with strong field-aligned anisotropies closer to the HCS appears to rule out solar flares and near-Sun coronal-mass-ejection-driven shocks. These new observations present challenges not only for mechanisms that employ direct parallel electric fields and organize maximum energies according to E / Q but also for local diffusive and magnetic-reconnection-driven acceleration models. Reevaluation of our current understanding of the production and transport of energetic ions is necessary to understand this near-solar, current-sheet-associated population of ST ions.more » « less