skip to main content

Search for: All records

Creators/Authors contains: "Mitchell, James B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electrochemical ion insertion into transition metal oxides forms the foundation of several energy technologies. Transition metal oxides can exhibit sluggish ion transport and/or phase-transformation kinetics during ion insertion that can limit their performance at high rates (<10 min). In this study, we investigate the role of structural water in transition metal oxides during Li + insertion using staircase potentiostatic electrochemical impedance spectroscopy (SPEIS) and electrochemical quartz crystal microbalance (EQCM) analysis of WO 3 ·H 2 O and WO 3 thin-film electrodes. Overall, the presence of structural water in WO 3 ·H 2 O improves Li + insertion kinetics compared to WO 3 and leads to a less potential-dependent insertion process. Operando electrogravimetry and 3D Bode impedance analyses of nanostructured films reveal that the presence of structural water promotes charge accommodation without significant co-insertion of solvent, leading to our hypothesis that the electrochemically induced structural transitions of WO 3 hinder the electrode response at faster timescales (<10 min). Designing layered materials with confined fluids that exhibit less structural transitions may lead to more versatile ion-insertion hosts for next-generation electrochemical technologies.
    Free, publicly-accessible full text available March 1, 2023