skip to main content


Search for: All records

Creators/Authors contains: "Mlynczak, Martin G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. An intriguing and rare gravity wave event was recorded on the night of 25 April 2017 using a multiwavelength all-sky airglow imager over northernGermany. The airglow imaging observations at multiple altitudes in themesosphere and lower thermosphere region reveal that a prominent upward-propagating wave structure appeared in O(1S) and O2 airglowimages. However, the same wave structure was observed to be very faint in OH airglow images, despite OH being usually one of the brightest airglowemissions. In order to investigate this rare phenomenon, the altitudeprofile of the vertical wavenumber was derived based on colocated meteorradar wind-field and SABER temperature profiles close to the event location.The results indicate the presence of a thermal duct layer in the altituderange of 85–91 km in the southwest region of Kühlungsborn, Germany.Utilizing these instrumental data sets, we present evidence to show how aleaky duct layer partially inhibited the wave progression in the OH airglowemission layer. The coincidental appearance of this duct layer is responsible for the observed faint wave front in the OH airglow images compared O(1S) and O2 airglow images during the course of the night over northern Germany. 
    more » « less
  2. Abstract

    The behaviors of the nitric oxide (NO) cooling in the lower thermosphere during the 14 December 2020 solar eclipse are studied using Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) measurements and WACCM‐X simulations. We found that NO cooling rate decreases during the solar eclipse in both SABER measurements and WACCM‐X simulations. The maximum decrease of the NO cooling is 40% in SABER measurements and 25% in WACCM‐X simulations. The NO cooling process is initiated almost entirely through the collisions with atomic oxygen (O) which depends linearly on NO and O densities and non‐linearly on the neutral temperature. During the eclipse, the NO concentration and temperature decreases are larger than that of O concentration. Consequently, the eclipse‐time NO concentration and temperature decreases are the major drivers of the NO cooling rate decrease. The decreases of the temperature and the NO concentration contribute comparably to the eclipse‐time NO cooling rate decrease.

     
    more » « less
  3. Abstract

    In the mesosphere and lower thermosphere (MLT) region, residual circulations driven by gravity wave breaking and dissipation significantly impact constituent distribution and the height and temperature of the mesopause. The distribution of CO2can be used as a proxy for the residual circulations. Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) CO2volume mixing ratio (VMR) and temperature measurements from 2003 to 2020 are used to study the monthly climatology of MLT residual circulations and the mesopause height. Our analyses show that (a) mesopause height strongly correlates with the CO2VMR vertical gradient during solstices; (b) mesopause height has a discontinuity at midlatitude in the summer hemisphere, with a lower mesopause height at mid‐to‐high latitudes as a result of adiabatic cooling driven by strong adiabatic upwelling; (c) the residual circulations have strong seasonal variations at mid‐to‐high latitudes, but they are more uniform at low latitudes; and (d) the interannual variability of the residual circulations and mesopause height is larger in the Southern Hemisphere (SH; 4–5 km) than in the Northern Hemisphere (NH; 0.5–1 km).

     
    more » « less
  4. Abstract

    Analyzing Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations from 2003 to 2018, the interannual variability of 2–5d eastward propagating planetary waves is found to correlate positively with zonal‐mean zonal winds averaged over 67.5°±10°S but negatively with the quasi‐biennial oscillation (QBO) index in austral winter. The composite‐mean wave amplitudes are ~20% larger in QBOe than in QBOw. On statistical average, the poleward flank strengthening and the equatorward flank weakening of polar night jet (PNJ) during QBOe form a dipole‐cell pattern. In contrast, only a single negative cell is seen in the Northern Hemisphere zonal‐mean zonal winds (January) previously explained by the Holton‐Tan theory. Such difference implies an interhemispheric asymmetry and other processes needed to explain the additional positive cell in Antarctica. Mechanistic modeling illustrates that the stronger PNJ generates eastward propagating planetary waves with larger growth rates (stronger waves) in QBOe than QBOw, explaining the QBO‐like signal in the Antarctic planetary waves.

     
    more » « less
  5. Abstract

    In order to understand the characteristics of long‐lasting “C‐type” structure in the Sodium (Na) lidargram, six cases from different observational locations have been analyzed. The Na lidargram, collected from low‐, middle‐, and high‐latitude sites, show long lifetime of the C‐type structures which is believed to be the manifestation of Kelvin‐Helmholtz (KH) billows in the Mesosphere and Lower Thermosphere (MLT) region. In order to explore the characteristics of the long‐lasting C‐type structures, the altitude profile of square of Brunt‐Väisälä frequency in the MLT region has been derived using the temperature profile collected from the Na lidar instruments and the SABER instrument onboard TIMED satellite. It is found to be positive in the C‐type structure region for all the six cases which indicates that the regions are convectively stable. Simultaneous wind measurements, which allowed us to calculate the Richardson numbers and Reynolds numbers for three cases, suggest that the regions where the C‐type structure appeared were dynamically stable and nonturbulent. This paper brings out a hypothesis wherein the low temperature can increase the magnitude of the Prandtl number and convectively stable atmospheric region can cause the magnitude of Reynolds number to decrease. As a consequence, the remnant of previously generated KH billows in nearly “frozen‐in” condition can be advected through this conducive region to a different location by the background wind where they can sustain for a long time without much deformation. These long‐lived KH billows in the MLT region will eventually manifest the long‐lasting C‐type structures in the Na lidargram.

     
    more » « less