skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mocnik, Teo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)
    The Gemini Planet Imager (GPI) is a high-contrast imaging instrument designed to directly detect and char- acterise young, Jupiter-mass exoplanets. After six years of operation at the Gemini South Telescope in Chile, the instrument is being upgraded and moved to the Gemini North Telescope in Hawaii as GPI 2.0. Several improvements have been made to the adaptive optics (AO) system as part of this upgrade. This includes re- placing the current Shack-Hartmann wavefront sensor with a pyramid wavefront sensor (PWFS) and a custom EMCCD. These changes will increase GPI’s sky coverage by accessing fainter targets, improving corrections on fainter stars and allowing faster and ultra-low latency operations on brighter targets. The PWFS subsystem was independently built and tested to verify its performance before being integrated into the GPI 2.0 instrument. This paper will present the pre-integration performance test results, including pupil image quality, throughput and linearity without modulation. 
    more » « less
    Free, publicly-accessible full text available August 27, 2025
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)
    ABSTRACT We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 $$\rm {M_J}$$ (43.9 ± 7.3 $$\, M_{\rm \oplus}$$), a radius of RP = 0.639 ± 0.013 $$\rm {R_J}$$ (7.16 ± 0.15 $$\, \mathrm{ R}_{\rm \oplus}$$), bulk density of $$0.65^{+0.12}_{-0.11}$$ (cgs), and period $$18.38818^{+0.00085}_{-0.00084}$$ $$\rm {days}$$. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M* = 1.390 ± 0.046 $$\rm {M_{sun}}$$, R* = 1.888 ± 0.033 $$\rm {R_{sun}}$$, Teff = 6075 ± 90 $$\rm {K}$$, and vsin i = 11.3 ± 0.5 km s−1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems. 
    more » « less