Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper investigates the use of imposed rotations of an underwater cylinder reversing direction at a desired frequency in order to transmit vortices in a flow and enable a new method of underwater force transmission. A hydrofoil interacts with controlled vortices, which modulates the forces on the hydrofoil. The motivation is to assist and resist users walking on an underwater treadmill in a continuous-flow aquatic therapy pool used for gait rehabilitation, utilizing buoyancy to reduce apparent limb weight and impact force while walking. Previously, we have shown this concept on a small scale with a passive double pendulum when the incoming fluid flow is highly uniform. This paper shows that force transmission is also possible in such a harsh environment (a continuous-flow aquatic therapy pool) where the incoming flow is highly non-uniform and at a much larger scale. By measuring forces acting on a downstream hydrofoil, we show that the frequency of the vortices generated upstream can be perceived by the downstream hydrofoil.more » « lessFree, publicly-accessible full text available July 15, 2025
-
Free, publicly-accessible full text available February 1, 2025
-
We investigate the effects of fluid elasticity on the flow forces and the wake structure when a rigid cylinder is placed in a viscoelastic flow and is forced to oscillate sinusoidally in the transverse direction. We consider a two-dimensional, uniform, incompressible flow of viscoelastic fluid at
, and use the FENE-P model to represent the viscoelastic fluid. We study how the flow forces and the wake patterns change as the amplitude of oscillations,$Re=100$ , the frequency of oscillations (inversely proportional to a reduced velocity,$A^*$ ), the Weissenberg number,$U^*$ , the square of maximum polymer extensibility,$Wi$ , and the viscosity ratio,$L^2$ , change individually. We calculate the lift coefficient in phase with cylinder velocity to determine the range of different system parameters where self-excited oscillations might occur if the cylinder is allowed to oscillate freely. We also study the effect of fluid elasticity on the added mass coefficient as these parameters change. The maximum elastic stress of the fluid occurs in between the vortices that are observed in the wake. We observe a new mode of shedding in the wake of the cylinder: in addition to the primary vortices that are also observed in the Newtonian flows, secondary vortices that are caused entirely by the viscoelasticity of the fluid are observed in between the primary vortices. We also show that, for a constant$\beta$ , the strength of the polymeric stresses increases with increasing reduced velocity or with decreasing amplitude of oscillations.$Wi$ -
Abstract The goal of this work is to present a method based on fluid–structure interactions to enforce a desired trajectory on a passive double pendulum. In our experiments, the passive double pendulum represents human thigh and shank segments, and the interaction between the fluid and the structure comes from a hydrofoil attached to the double pendulum and interacting with the vortices that are shed from a cylinder placed upstream. When a cylinder is placed in flow, vortices are shed in the wake of the cylinder. When the cylinder is forced to rotate periodically, the frequency of the vortices that are shed in its wake can be controlled by controlling the frequency of cylinder’s rotation. These vortices exert periodic forces on any structure placed in the wake of this cylinder. In our system, we place a double pendulum fitted with a hydrofoil at its distal end in the wake of a rotating cylinder. The vortices exert periodic forces on this hydrofoil which then forces the double pendulum to oscillate. We control the cylinder to rotate periodically, and measure the displacement of the double pendulum. By comparing the joint positions of the double pendulum with those of human hip, knee and ankle joint positions during walking, we show how the system is able to generate a human walking gait cycle on the double pendulum only using the interactions between the vortices and the hydrofoil.more » « less
-
null (Ed.)We present the dynamics of a hydrofoil free to oscillate in a plane as it interacts with vortices that are shed from a cylinder placed upstream. We consider cases where the cylinder is (i) fixed, (ii) forced to rotate constantly in one direction or (iii) forced to rotate periodically. When the upstream cylinder is fixed, at lower reduced velocities, the hydrofoil oscillates with a frequency equal to the frequency of vortices shed from the cylinder, and at higher reduced velocities with a frequency equal to half of the shedding frequency. When we force the cylinder to rotate in one direction, we control its wake and directly influence the response of the hydrofoil. When the rotation rate goes beyond a critical value, the vortex shedding in the cylinder's wake is suppressed and the hydrofoil is moved to one side and remains mainly static. When we force the cylinder to rotate periodically, we control the frequency of vortex shedding, which will be equal to the rotation frequency. Then at lower rotation frequencies, the hydrofoil interacts with one of the vortices in its oscillation path in the positive crossflow (transverse) direction, and with the second vortex in the negative crossflow direction, resulting in a 2:1 ratio between its inline and crossflow oscillations and a figure-eight trajectory. At higher rotation frequencies, the hydrofoil interacts with both shed vortices on its positive crossflow path and again in its negative crossflow path, resulting in a 1:1 ratio between its inline and crossflow oscillations and a linear trajectory.more » « less
-
The interaction of flexible structures with viscoelastic flows can result in very rich dynamics. In this paper, we present the results of the interactions between the flow of a viscoelastic polymer solution and a cantilevered beam in a confined microfluidic geometry. Cantilevered beams with varying length and flexibility were studied. With increasing flow rate and Weissenberg number, the flow transitioned from a fore-aft symmetric flow to a stable detached vortex upstream of the beam, to a time-dependent unstable vortex shedding. The shedding of the unstable vortex upstream of the beam imposed a time-dependent drag force on the cantilevered beam resulting in flow-induced beam oscillations. The oscillations of the flexible beam were classified into two distinct regimes: a regime with a clear single vortex shedding from upstream of the beam resulting in a sinusoidal beam oscillation pattern with the frequency of oscillation increasing monotonically with Weissenberg number, and a regime at high Weissenberg numbers characterized by 3D viscoelastic instabilities where the frequency of oscillations plateaued. The critical onset of the flow transitions, the mechanism of vortex shedding and the dynamics of the cantilevered beam response are presented in detail here as a function of beam flexibility and flow viscoelasticity.more » « less